Publications by authors named "Michael Swanson"

Nonketotic hyperglycinemia due to deficient glycine cleavage enzyme activity causes a severe neonatal epileptic encephalopathy. Current therapies based on mitigating glycine excess have only limited impact. An animal model with postnatal phenotyping is needed to explore new therapeutic approaches.

View Article and Find Full Text PDF

Unlabelled: Nonketotic hyperglycinemia due to deficient glycine cleavage enzyme activity causes a severe neonatal epileptic encephalopathy. Current therapies based on mitigating glycine excess have only limited impact. An animal model with postnatal phenotyping is needed to explore new therapeutic approaches.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) vector-based gene therapy is an innovative modality being increasingly investigated to treat diseases by modifying or replacing defective genes or expressing therapeutic entities. With its unique anatomic and physiological characteristics, the eye constitutes a very attractive target for gene therapy. Specifically, the ocular space is easily accessible and is generally considered "immune-privileged" with a low risk of systemic side effects following local drug administration.

View Article and Find Full Text PDF

Background: Clesrovimab (MK-1654) is an investigational, half-life extended human monoclonal antibody (mAb) against RSV F glycoprotein in clinical trials as a prophylactic agent against RSV infection for infants.

Methods: This adult study measured clesrovimab concentrations in the serum and nasal epithelial lining fluid (ELF) to establish the partitioning of the antibody after dosing. Clesrovimab concentrations in the nasal ELF were normalized for sampling dilution using urea concentrations from ELF and serum.

View Article and Find Full Text PDF

Cell and gene therapies have demonstrated impressive therapeutic efficacy in various human diseases. Nevertheless, cellular immune response directed against these therapeutic agents is an obstacle for achieving long-lasting clinical efficacy. Therefore, it is crucial to develop robust assays to accurately monitor cellular immunogenicity towards these therapies.

View Article and Find Full Text PDF

MK-1654 is a fully human monoclonal antibody with YTE mutations currently in phase III clinical trials for prophylactic use in protecting infants from human respiratory syncytial virus infection. We generated anti-idiotype (anti-ID) and anti-YTE antibodies against MK-1654 by panning with MorphoSys HuCal phage libraries, and used the antibodies in the development of MK-1654 pharmacokinetic (PK) and immune response (IR) assays. Detection of MK-1654 in nonhuman primate and human nasal wash samples showed combined use of anti-ID and anti-YTE antibodies can deliver desired sensitivity and accuracy in PK studies.

View Article and Find Full Text PDF
Article Synopsis
  • A survey by the Therapeutic Product Immunogenicity community explored immunogenicity risk assessment strategies used by participants before clinical development, spanning 5 years and focusing on in silico algorithms and in vitro assays.
  • Key findings showed a trend towards using advanced tools like high-throughput in silico algorithms, human immune cell-based assays, and proteomics for effective risk assessments.
  • Participants also indicated that these tools not only supported early development phases but also informed clinical strategies and improved bioanalysis efficiency.
View Article and Find Full Text PDF
Article Synopsis
  • Protein lipoylation is crucial for cell metabolism, with the H-protein (GCSH) playing a key role in this process for important enzymes and one-carbon metabolism.
  • A study of six patients with pathogenic variants in GCSH showed a range of clinical issues, from severe neonatal encephalopathy to milder developmental delays and movement disorders.
  • Functional analyses revealed that most mutations led to reduced mitochondrial activity and metabolic deficiencies, highlighting the importance of understanding these variants to guide treatment options.
View Article and Find Full Text PDF

Oligonucleotide therapeutics (ONTs) are a diverse group of short synthetic nucleic acid-based molecules that exploit innovative intracellular molecular strategies to create novel treatments for a variety of medical conditions. ONT molecules (~7-15 kDa) reside between traditional large and small molecules, and there has been debate regarding their immunogenicity risk. To date, 13 ON drugs have been approved, and as the field is relatively new, there are currently no specific regulatory guidelines to indicate how to develop, validate, and interpret the immunogenicity assays of ONTs.

View Article and Find Full Text PDF

Aggregates of therapeutic proteins have been associated with increased immunogenicity in pre-clinical models as well as in human patients. Recent studies to understand aggregates and their immunogenicity risks use artificial stress methods to induce high levels of aggregation. These methods may be less biologically relevant in terms of their quantity than those that occur spontaneously during processing and storage.

View Article and Find Full Text PDF

Host cell proteins (HCPs) are a significant class of process-related impurities commonly associated with the manufacturing of biopharmaceuticals. However, due to the increased use of crude enzymes as biocatalysts for modern organic synthesis, HCPs can also be introduced as a new class of impurities in chemical drugs. In both cases, residual HCPs need to be adequately controlled to ensure product purity, quality, and patient safety.

View Article and Find Full Text PDF

Nonketotic hyperglycinemia (NKH) is caused by deficient glycine cleavage enzyme activity and characterized by elevated brain glycine. Metabolism of glycine is connected enzymatically to serine through serine hydroxymethyltransferase and shares transporters with serine and threonine. We aimed to evaluate changes in serine and threonine in NKH patients, and relate this to clinical outcome severity.

View Article and Find Full Text PDF

Immunogenicity to biologics is often observed following dosing in human subjects during clinical trials. Both product and host specific factors may be implicated in contributing to a potential immune response. However, even if such risk factors are identified and eliminated as part of the rational quality by design approaches, the outcome in clinic can be uncertain and challenging to predict.

View Article and Find Full Text PDF

Host cell proteins (HCPs) are process-related impurities derived from host organisms, which need to be controlled to ensure adequate product quality and safety. In this study, product quality attributes were tracked for several monoclonal antibodies (mAbs) under the intended storage and accelerated stability conditions. One product quality attribute not expected to be stability indicating is the N-glycan heterogeneity profile.

View Article and Find Full Text PDF

Lectins, carbohydrate-binding proteins, have been regarded as potential antiviral agents, as some can bind glycans on viral surface glycoproteins and inactivate their functions. However, clinical development of lectins has been stalled by the mitogenicity of many of these proteins, which is the ability to stimulate deleterious proliferation, especially of immune cells. We previously demonstrated that the mitogenic and antiviral activities of a lectin (banana lectin, BanLec) can be separated via a single amino acid mutation, histidine to threonine at position 84 (H84T), within the third Greek key.

View Article and Find Full Text PDF

Here we report an ultra-long-acting tunable, biodegradable, and removable polymer-based delivery system that offers sustained drug delivery for up to one year for HIV treatment or prophylaxis. This robust formulation offers the ability to integrate multiple drugs in a single injection, which is particularly important to address the potential for drug resistance with monotherapy. Six antiretroviral drugs were selected based on their solubility in N-methyl-2-pyrrolidone and relevance as a combination therapy for HIV treatment or prevention.

View Article and Find Full Text PDF

Pyridoxine-dependent epilepsy (PDE) is often characterized as an early onset epileptic encephalopathy with dramatic clinical improvement following pyridoxine supplementation. Unfortunately, not all patients present with classic neonatal seizures or respond to an initial pyridoxine trial, which can result in the under diagnosis of this treatable disorder. Restriction of lysine intake and transport is associated with improved neurologic outcomes, although treatment should be started in the first year of life to be effective.

View Article and Find Full Text PDF

Pyridoxine dependent epilepsy (PDE) is a treatable epileptic encephalopathy characterized by a positive response to pharmacologic doses of pyridoxine. Despite seizure control, at least 75% of individuals have intellectual disability and developmental delay. Current treatment paradigms have resulted in improved cognitive outcomes emphasizing the importance of an early diagnosis.

View Article and Find Full Text PDF

The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain.

View Article and Find Full Text PDF

The original supplementary information included with this article contained several minor errors. Corrected Supplementary Information accompanies this corrigendum.

View Article and Find Full Text PDF

Mutations in FARS2 are known to cause dysfunction of mitochondrial translation due to deficient aminoacylation of the mitochondrial phenylalanine tRNA. Here, we report three novel mutations in FARS2 found in two patients in a compound heterozygous state. The missense mutation c.

View Article and Find Full Text PDF

Promising therapeutic approaches for eradicating HIV include transcriptional activation of provirus from latently infected cells using latency-reversing agents (LRAs) and immune-mediated clearance to purge reservoirs. Accurate detection of cells capable of producing viral antigens and virions, and the measurement of clearance of infected cells, is essential to assessing therapeutic efficacy. Here, we apply enhanced methodology extending the sensitivity limits for the rapid detection of subfemtomolar HIV gag p24 capsid protein in CD4+ T cells from ART-suppressed HIV+ individuals, and we show viral protein induction following treatment with LRAs.

View Article and Find Full Text PDF

Historically, d-glyceric aciduria was thought to cause an uncharacterized blockage to the glycine cleavage enzyme system (GCS) causing nonketotic hyperglycinemia (NKH) as a secondary phenomenon. This inference was reached based on the clinical and biochemical results from the first d-glyceric aciduria patient reported in 1974. Along with elevated glyceric acid excretion, this patient exhibited severe neurological symptoms of myoclonic epilepsy and absent development, and had elevated glycine levels and decreased glycine cleavage system enzyme activity.

View Article and Find Full Text PDF