Publications by authors named "Michael Sumetsky"

Surface Nanoscale Axial Photonics (SNAP) is a promising technological platform for creating novel optical devices such as compact high-Q tunable delay lines, signal processors, and optical comb generators. For this purpose, the development of simple and reliable methods for the accurate introduction of a nanometer-scale variation of the optical fiber surface is desirable. Here, we present an easy-to-implement technique for the introduction of nanoscale variations of the effective optical fiber radius by annealing with a heated metal wire.

View Article and Find Full Text PDF

High Q-factor monolithic optical microresonators found numerous applications in classical and quantum optical signal processing, microwave photonics, ultraprecise sensing, as well as fundamental optical and physical sciences. However, due to the solid structure of these microresonators, attaining the free spectral range tunability of most of them, critical for several of these applications, was, so far, unfeasible. To address this problem, here we experimentally demonstrate that the side-coupling of coplanar bent optical fibres can induce a high Q-factor whispering gallery mode optical microresonator.

View Article and Find Full Text PDF

We demonstrated the subangstrom precise correction of surface nanoscale axial photonics (SNAP) micro-resonators by the femtosecond (fs) laser postprocessing technique for the first time. The internal stress can be induced by fs laser inscriptions in the fiber, causing nanoscale effective radius variation (ERV). However, the obtained ultraprecise fabrication usually undergoes multiple tries.

View Article and Find Full Text PDF

The simple method for modeling of circuits of weakly coupled lossy resonant cavities, previously developed in quantum mechanics, is generalized to enable calculation of the transmission and reflection amplitudes and group delay of light. Our result is the generalized Breit-Wigner formula, which has a clear physical meaning and is convenient for fast modeling and optimization of complex resonant cavity circuits and, in particular, superstructure gratings in a way similar to modeling and optimization of electric circuits. As examples, we find the conditions when a finite linear chain of cavities and a linear chain with adjacent cavities act as bandpass and double bandpass filters, and the condition for a Y-shaped structure to act as a bandpass 50/50 light splitter.

View Article and Find Full Text PDF

The theory of the group delay ripple generated by apodized chirped fiber gratings is developed using the analogy between noisy gratings and superstructure Bragg gratings. It predicts the fundamental cutoff of the high frequency spatial noise of grating parameters in excellent agreement with the experimental data. We find simple general relationship between the high-frequency ripple in the grating period and the group delay ripple.

View Article and Find Full Text PDF