Publications by authors named "Michael Sturzl"

Secretomes of cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC) contribute to malignancy. Detailed knowledge is available on the components and functions of CAF secretomes. Little is known about the regulation of CAF secretomes.

View Article and Find Full Text PDF
Article Synopsis
  • The vasculature plays a crucial role in solid tumors like colorectal carcinoma (CRC) and is a significant target for therapy, but predicting treatment responses remains a challenge after nearly 20 years of antiangiogenic treatments.
  • Resistance to treatment arises due to variations in blood vessel cells, which differ based on species and the specific tumor environment, complicating standardized approaches for all patients.
  • Recent discoveries of angiocrine proteins that affect tumor growth and progression highlight new opportunities to improve treatment by normalizing tumor blood vessels and individualized therapy targeting these proteins.
View Article and Find Full Text PDF

The immune microenvironment plays an important role in the regulation of diseases. The characterization of the cellular composition of immune cell infiltrates in diseases and respective models is a major task in pathogenesis research and diagnostics. For the assessment of immune cell populations in tissues, fluorescence-activated cell sorting (FACS) or immunohistochemistry (IHC) are the two most common techniques presently applied, but they are cost intensive, laborious, and sometimes limited by the availability of suitable antibodies.

View Article and Find Full Text PDF

Background & Aims: T cells are crucial for the antitumor response against colorectal cancer (CRC). T-cell reactivity to CRC is nevertheless limited by T-cell exhaustion. However, molecular mechanisms regulating T-cell exhaustion are only poorly understood.

View Article and Find Full Text PDF

The development of inflammatory bowel diseases (IBD) involves the breakdown of two barriers: the epithelial barrier and the gut-vascular barrier (GVB). The destabilization of each barrier can promote initiation and progression of the disease. Interestingly, first evidence is available that both barriers are communicating through secreted factors that may accordingly serve as targets for therapeutic modulation of barrier functions.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBDs) are a global health issue with an increasing incidence. Although the pathogenesis of IBDs has been investigated intensively, the etiology of IBDs remains enigmatic. Here, we report that interleukin-3 (Il-3)-deficient mice are more susceptible and exhibit increased intestinal inflammation during the early stage of experimental colitis.

View Article and Find Full Text PDF

Background And Aims: The anti-MAdCAM-1 antibody ontamalimab demonstrated efficacy in a phase II trial in ulcerative colitis and results of early terminated phase III trials are pending, but its precise mechanisms of action are still unclear. Thus, we explored the mechanisms of action of ontamalimab and compared it to the anti-α4β7 antibody vedolizumab.

Methods: We studied MAdCAM-1 expression with RNA sequencing and immunohistochemistry.

View Article and Find Full Text PDF

Guanylate binding proteins (GBPs) are prominent regulators of immunity not known to be required for nuclear envelope formation and morphogenesis. Here we identify the Arabidopsis GBP orthologue AtGBPL3 as a lamina component with essential functions in mitotic nuclear envelope reformation, nuclear morphogenesis and transcriptional repression during interphase. AtGBPL3 is preferentially expressed in mitotically active root tips, accumulates at the nuclear envelope and interacts with centromeric chromatin as well as with lamina components transcriptionally repressing pericentromeric chromatin.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels.

View Article and Find Full Text PDF

During inflammatory responses, neutrophils enter the sites of attack where they execute various defense mechanisms. They (I) phagocytose microorganisms, (II) degranulate to release cytokines, (III) recruit various immune cells by cell-type specific chemokines, (IV) secrete anti-microbials including lactoferrin, lysozyme, defensins and reactive oxygen species, and (V) release DNA as neutrophil extracellular traps (NETs). The latter originates from mitochondria as well as from decondensed nuclei.

View Article and Find Full Text PDF

Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders.

View Article and Find Full Text PDF

The tumor immune microenvironment (TIME) controls tumorigenesis. Neutrophils are important components of TIME and control tumor progression and therapy resistance. Neutrophil extracellular traps (NETs) ejected by activated neutrophils are net-like structures composed of decondensed extracellular chromatin filaments decorated with a plethora of granules as well as cytoplasmic proteins.

View Article and Find Full Text PDF

Background & Aims: Advanced colorectal carcinoma (CRC) is characterized by a high frequency of primary immune evasion and refractoriness to immunotherapy. Given the importance of interferon (IFN)-γ in CRC immunosurveillance, we investigated whether and how acquired IFN-γ resistance in tumor cells would promote tumor growth, and whether IFN-γ sensitivity could be restored.

Methods: Spontaneous and colitis-associated CRC development was induced in mice with a specific IFN-γ pathway inhibition in intestinal epithelial cells.

View Article and Find Full Text PDF

Objective: Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis.

View Article and Find Full Text PDF

Background: Integrin αvβ6 is a heterodimeric cell surface protein whose cellular expression is determined by the availability of the integrin β6 subunit (ITGB6). It is expressed at very low levels in most organs during tissue homeostasis but shows highly upregulated expression during the process of tumorigenesis in many cancers of epithelial origin. Notably, enhanced expression of integrin αvβ6 is associated with aggressive disease and poor prognosis in numerous carcinoma entities.

View Article and Find Full Text PDF

SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are extracellular structures, composed of nuclear DNA and various proteins released from neutrophils. Evidence is growing that NETs exert manifold functions in infection, immunity and cancer. Recently, NETs have been detected in colorectal cancer (CRC) tissues, but their association with disease progression and putative functional impact on tumourigenesis remained elusive.

View Article and Find Full Text PDF

Inflammatory bowel disease describes chronic inflammatory disorders. The incidence of the disease is rising. A major step in disease development is the breakdown of the epithelial cell barrier.

View Article and Find Full Text PDF

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses.

View Article and Find Full Text PDF

Background: The understanding of vascular plasticity is key to defining the role of blood vessels in physiologic and pathogenic processes. In the present study, the impact of the vascular quiescence marker SPARCL1 on angiogenesis, capillary morphogenesis, and vessel integrity was evaluated.

Methods: Angiogenesis was studied using the metatarsal test, an ex vivo model of sprouting angiogenesis.

View Article and Find Full Text PDF

Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) recently emerged as a promising cancer immunotherapy target. We set out to investigate the functional role of PTPN2 in the pathogenesis of human colorectal carcinoma (CRC), as its role in immune-silent solid tumors is poorly understood. We demonstrate that in human CRC, increased PTPN2 expression and activity correlated with disease progression and decreased immune responses in tumor tissues.

View Article and Find Full Text PDF

Background: Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood.

Methods: Samples were donated from hospitalized patients.

View Article and Find Full Text PDF

SPARCL1 is a matricellular protein with anti-adhesive, anti-proliferative and anti-tumorigenic functions and is frequently downregulated in tumors such as colorectal carcinoma or non-small cell lung cancer. Studies have identified SPARCL1 as an angiocrine tumor suppressor secreted by tumor vessel endothelial cells, thereby exerting inhibitory activity on angiogenesis and tumor growth, in colorectal carcinoma. It is unknown whether SPARCL1 may exert these homeostatic functions in all organs and in other species.

View Article and Find Full Text PDF

Organoids and three-dimensional (3D) cell cultures allow the investigation of complex biological mechanisms and regulations in vitro, which previously was not possible in classical cell culture monolayers. Moreover, monolayer cell cultures are good in vitro model systems but do not represent the complex cellular differentiation processes and functions that rely on 3D structure. This has so far only been possible in animal experiments, which are laborious, time consuming, and hard to assess by optical techniques.

View Article and Find Full Text PDF