Publications by authors named "Michael Stenbaek Schmidt"

We present a Raman spectroscopy setup containing a conical beam shaper in combination with a freeform segmented reflector for surface enhanced Raman scattering (SERS) analysis. The freeform segmented reflector and the conical beam shaper are designed by numerical approaches and fabricated by means of ultra-precision diamond tooling. The segmented reflector has a numerical aperture of 0.

View Article and Find Full Text PDF

We present a freeform-segmented reflector-based microfluidic system for conventional Raman and Surface-Enhanced Raman Scattering (SERS) analysis. The segmented reflector is directly designed by a numerical approach. The polymer-based Raman system strongly suppresses the undesirable background because it enables confocal detection of Raman scattering through the combination of a freeform reflector and a microfluidic chip.

View Article and Find Full Text PDF

We have earlier demonstrated sensitive detection of low the volatile nerve agents Tabun, Cyclosarin and VX by using handheld Raman instrumentation in conjunction with surface-enhanced Raman scattering (SERS) attained with gold and silver coated Si nanopillar substrates. In the present proof-of-concept study, the gold substrates chemically are functionalized to realize selectivity towards organophosphorus compounds (OPs) with high sensitivity. A potential capturer and reporter molecule, chemical nerve agent antidote, 4-pyridine amide oxime, is evaluated due to its high Raman cross section, high chemical affinity towards gold, and binding specificity to the target substances Tabun, VX and Cyclosarin via the oxime group.

View Article and Find Full Text PDF

Therapeutic drug monitoring (TDM) for anticancer drug imatinib has been suggested as the best way to improve the treatment response and minimize the risk of adverse reactions in chronic myelogenous leukemia (CML) and gastrointestinal stromal tumor (GIST) patients. TDM of oncology treatments with standard analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) is, however, complex and demanding. This paper proposes a new method for quantitation of imatinib in human plasma, based on surface enhanced raman spectroscopy (SERS) and multivariate calibration using partial least-squares regression (PLSR).

View Article and Find Full Text PDF

Ultra-sensitive in-field measurements of most forensic substances still today remain a challenge for first responders and forensic investigators. Handheld Raman spectroscopy equipment is getting more and more routinely used in the field for evidence collection, however, restricted to measurements of pure or high concentration samples. Here, surface-enhanced Raman scattering (SERS) sensing of common forensic substances with commercially available SERS substrates and handheld spectrometers, have been investigated.

View Article and Find Full Text PDF

In this work, we present a dual-functional sensor that can perform surface-enhanced Raman spectroscopy (SERS) based identification and electrochemical (EC) quantification of analytes in liquid samples. A lithography-free reactive ion etching process was utilized to obtain nanostructures of high aspect ratios distributed homogeneously on a 4 in. fused silica wafer.

View Article and Find Full Text PDF

We present a simple, robust, and automated molecule extraction technique based on a centrifugal microfluidic platform. Fast and facile extraction of a food adulterant (melamine) from a complex sample medium (milk) on a SERS substrate is demonstrated. The unique characteristic of the detection method is the obtained "filter paper/chromatographic" effect which combines centrifugal force and wetting properties of the SERS substrate.

View Article and Find Full Text PDF

There is an increasing demand for rapid, sensitive, and low cost analytical methods to routinely screen antibiotic residues in food products. Conventional detection of antibiotics involves sample preparation by liquid-liquid or solid-phase extraction, followed by analysis using liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis (CE), or gas chromatography (GC). The process is labor-intensive, time-consuming, and expensive.

View Article and Find Full Text PDF

Picric acid (PA) is a severe environmental and security risk due to its unstable, toxic, and explosive properties. It is also challenging to detect in trace amounts and in situ because of its highly acidic and anionic character. Here, we assess sensing of PA under nonlaboratory conditions using surface-enhanced Raman scattering (SERS) silver nanopillar substrates and hand-held Raman spectroscopy equipment.

View Article and Find Full Text PDF

The number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid-liquid extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures.

View Article and Find Full Text PDF

Tunable plasmonic platforms are important for a variety of applications such as photovoltaics, LED's, optoelectronics, medical research, and biosensors. In particular, development of label-free plasmonic biosensors is one of the key research areas that utilizes plasmonic nanostructures for detection of biologically relevant molecules at low concentrations. The authors have developed a cost-effective, fast, and lithography-free method to fabricate transparent fused silica nanocylinders.

View Article and Find Full Text PDF

Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. Here we demonstrate that surface-enhanced Raman scattering (SERS) can be used for sensitive detection of femtomol quantities of two nerve gases, VX and Tabun, using a handheld Raman device and SERS substrates consisting of flexible gold-covered Si nanopillars.

View Article and Find Full Text PDF

Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels.

View Article and Find Full Text PDF

Localized surface plasmon resonances (LSPR) and plasmon couplings in Ag capped Si Nanopillar (Ag NP) structures are studied using 3D FEM simulations and dark-field scattering microscopy. Simulations show that a standalone Ag NP supports two LSPR modes, i.e.

View Article and Find Full Text PDF

In this paper, we report multiplex SERS based VOCs detection with a leaning nano-pillar substrate. The VOCs analyte molecules adsorbed at the tips of the nano-pillars produced SERS signal due to the field enhancement occurring at the localized surface plasmon hot spots between adjacent leaning nano-pillars. In this experiment, detections of acetone and ethanol vapor at different concentrations were demonstrated.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars is functionalized with aptamers for sensitive and specific detection of target molecules.

View Article and Find Full Text PDF

Using a simple two step fabrication process substrates with a large and uniform Raman enhancement, based on flexible free standing nanopillars can be manufactured over large areas using readily available silicon processing equipment.

View Article and Find Full Text PDF