Publications by authors named "Michael Steidel"

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions.

View Article and Find Full Text PDF

In order to understand the full mechanism of action of candidate drug molecules, it is critical to thoroughly characterize their interactions with endogenously expressed pharmacological targets and potentially undesired off-targets. Here we describe a chemoproteomics approach that is based on functionalized analogs of the compound of interest to affinity enrich target proteins from cell or tissue extracts. Experiments are designed as competition binding assays where free parental compound is spiked at a range of concentrations into the extracts to compete specific binders off the immobilized compound matrix.

View Article and Find Full Text PDF

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking.

View Article and Find Full Text PDF

A better understanding of proteostasis in health and disease requires robust methods to determine protein half-lives. Here we improve the precision and accuracy of peptide ion intensity-based quantification, enabling more accurate protein turnover determination in non-dividing cells by dynamic SILAC-based proteomics. This approach allows exact determination of protein half-lives ranging from 10 to >1000 h.

View Article and Find Full Text PDF

Adiponectin is one of the most abundant adipokines secreted from adipose tissue. It acts as an endogenous insulin sensitizer and plasma concentrations are inversely correlated with obesity and metabolic syndrome. A decrease in plasma adiponectin levels normally indicates increased hormonal activity of the visceral lipid tissue, which is associated with decreased insulin sensitivity.

View Article and Find Full Text PDF