Electrolytic Electroporation (E2) is the combination of reversible electroporation and electrolysis. It has been proposed as a novel treatment option to ablate tissue percutaneously. The present in vitro study in cells in suspension was performed to investigate the underlying mechanisms of action of E2.
View Article and Find Full Text PDFBackground: Percutaneous image-guided tissue ablation (IGA) plays a growing role in the clinical management of solid malignancies. Electroporation is used for IGA in several modalities: irreversible electroporation (IRE), and reversible electroporation with chemotoxic drugs, called electrochemotherapy (ECT). It was shown that the combination of electrolysis and electroporation-E2-affords tissue ablation with greater efficiency, that is, lower voltages, lower energy and shorter procedure times than IRE and without the need for chemotoxic additives as in ECT.
View Article and Find Full Text PDFBackground: The combination of electroporation with electrolysis (E2) has previously been introduced as a novel tissue ablation technique. E2 allows the utilization of a wide parameter range and may therefore be a suitable technology for development of tissue-specific application protocols. Previous studies have implied that it is possible to achieve big lesions in liver in a very short time.
View Article and Find Full Text PDFWe demonstrate feasibility and safety of Electrochemotherapy for treatment of a prostate cancer (PCa) with infiltration of the urethral sphincter. The patient remained continent and potent, toxicity was low, and 6 months of follow-up showed no cancer activity. We conclude that Electrochemotherapy should be further evaluated as treatment strategy for locally advanced PCa.
View Article and Find Full Text PDFWe report results from an acute, single case study in the pig liver on the effects of a tissue ablation protocol (we named cryoelectrolysis) in which 10 min of cryosurgery, with a commercial cryosurgical probe, are delivered after 10 min of electrolysis generated by a current of about 60 mA. The histological appearance of tissue treated with cryoelectrolysis is compared with the appearance of tissue treated with 10 min of cryosurgery alone and with 10 min of electrolysis alone. Histology done after 3 h survival shows that the mixed rim of live and dead cells found around the ablated lesion in both cryosurgery and electrolytic ablation is replaced by a sharp margin between life and dead cells in cryoelectrolysis.
View Article and Find Full Text PDFThe combination of Irreversible Electroporation and Electrochemotherapy (IRECT) was well tolerated, safe, and had antitumor activity in this case study of a patient with lymph node metastases from gastric cancer. We therefore recommend the consideration of further clinical studies to investigate the treatment of cancerous tissue with IRECT.
View Article and Find Full Text PDFBackground: Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2).
Method: A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW) was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology.
Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility.
View Article and Find Full Text PDFFreezing-cryosurgery, and electrolysis-electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products-which makes it a lengthy procedure.
View Article and Find Full Text PDFElectroporation, the permeabilization of the cell membrane by brief, high electric fields, has become an important technology in medicine for diverse application ranging from gene transfection to tissue ablation. There is ample anecdotal evidence that the clinical application of electroporation is often associated with loud sounds and extremely high currents that exceed the devices design limit after which the devices cease to function. The goal of this paper is to elucidate and quantify the biophysical and biochemical basis for this phenomenon.
View Article and Find Full Text PDFTechnol Cancer Res Treat
October 2016
Nonthermal irreversible electroporation is a new tissue ablation technique that consists of applying pulsed electric fields across cells to induce cell death by creating permanent defects in the cell membrane. Nonthermal irreversible electroporation is of interest because it allows treatment near sensitive tissue structures such as blood vessels and nerves. Two recent articles report that electrolytic reaction products at electrodes can be combined with electroporation pulses to augment and optimize tissue ablation.
View Article and Find Full Text PDFThis document by an expert panel of the International Society for Neurovascular Disease is aimed at presenting current technique and interpretation of catheter venography of the internal jugular veins, azygous vein and other veins draining the central nervous system. Although interventionalists agree on general rules, significant differences exist in terms of details of venographic technique and interpretations of angiographic pictures. It is also suggested that debatable findings should be investigated using multimodal diagnostics.
View Article and Find Full Text PDF