Publications by authors named "Michael Stangl"

Coat protein (COP) I and COP II complexes are involved in the transport of proteins between the endoplasmic reticulum and the Golgi apparatus in eukaryotic cells. The formation of COP I/II complexes at membrane surfaces is an early step in vesicle formation and is mastered by p24, a type I transmembrane protein. Oligomerization of p24 monomers was suggested to be mediated and/or stabilized via interactions within the transmembrane domain, and the p24 transmembrane helix appears to selectively bind a single sphingomyelin C18:0 molecule.

View Article and Find Full Text PDF

Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer-oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core.

View Article and Find Full Text PDF

As traditional detergents might destabilize or even denature membrane proteins, amphiphilic polymers have moved into the focus of membrane-protein research in recent years. Thus far, Amphipols are the best studied amphiphilic copolymers, having a hydrophilic backbone with short hydrophobic chains. However, since stabilizing as well as destabilizing effects of the Amphipol belt on the structure of membrane proteins have been described, we systematically analyze the impact of the most commonly used Amphipol A8-35 on the structure and stability of a well-defined transmembrane protein model, the glycophorin A transmembrane helix dimer.

View Article and Find Full Text PDF

Because a polymer environment might be milder than a detergent micelle, amphiphilic polymers have attracted attention as alternatives to detergents in membrane biochemistry. The polymer poly[N-(2-hydroxypropyl)-methacrylamid] [p(HPMA)] has recently been modified with hydrophobic lauryl methacrylate (LMA) moieties, resulting in the synthesis of amphiphilic p(HPMA)-co-p(LMA) polymers. p(HPMA)-co-p(LMA) polymers with a LMA content of 5 or 15% have unstable hydrophobic cores.

View Article and Find Full Text PDF

Detergents might affect membrane protein structures by promoting intramolecular interactions that are different from those found in native membrane bilayers, and fine-tuning detergent properties can be crucial for obtaining structural information of intact and functional transmembrane proteins. To systematically investigate the influence of the detergent concentration and acyl-chain length on the stability of a transmembrane protein structure, the stability of the human glycophorin A transmembrane helix dimer has been analyzed in lyso-phosphatidylcholine micelles of different acyl-chain length. While our results indicate that the transmembrane protein is destabilized in detergents with increasing chain-length, the diameter of the hydrophobic micelle core was found to be less crucial.

View Article and Find Full Text PDF

The novel 1,16:6,7:8,9:14,15-tetranaphthoterrylene tetracarboxdiimide was synthesized via a straightforward route, yielding optically active atropisomers with a high racemization barrier. Absorption, fluorescence, and circular dichroism measurements revealed high absorption coefficients and fluorescence quantum yields and enabled the stereochemical assignment in combination with quantum mechanical calculations.

View Article and Find Full Text PDF