Aryl radicals can react at the C8-site of 2'-deoxyguanosine (dG) to produce DNA adducts with a C8-C linkage (denoted C-linked). Such adducts are structurally distinct from those possessing a flexible amine (N-linked) or ether (O-linked) linkage, which separates the C8-aryl moiety from the guanine nucleobase. In the current study, two model C-linked C8-dG adducts, namely, C8-benzo[b]thienyl-dG ([BTh]G) and C8-(pyren-1-yl)-dG ([Py]G), were incorporated into the NarI (12mer, NarI(12) and 22mer, NarI(22)) hotspot sequence for frameshift mutations in bacteria.
View Article and Find Full Text PDFCertain phenoxyl radicals can attach covalently to the C8-site of 2'-deoxyguanosine (dG) to afford oxygen-linked C8-dG adducts. Such O-linked adducts can be chemically synthesized through a nucleophilic displacement reaction between a phenolate and a suitably protected 8-Br-dG derivative. This permits the generation of model O-linked C8-dG adducts on scales suitable for insertion into oligonucleotide substrates using solid-phase DNA synthesis.
View Article and Find Full Text PDFEmissive C8-aryl-2'-deoxyguanosines placed within G-tetrads of G-quadruplex structures are useful probes for distinguishing G-quadruplexes from duplex structures using fluorescence spectroscopy. Here, we report the positional impact of C8-furyl-dG ((Fur)dG) on G-quadruplex folding in the human telomere 22-mer oligonucleotide (HTelo22, (d[AG3(T2AG3)3])). The (Fur)dG probe was inserted into four different positions within the three unique G-tetrads of HTelo22, and G-quadruplex folding was monitored by UV-vis thermal denaturation, circular dichroism, and fluorescence spectroscopy.
View Article and Find Full Text PDFChemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2'-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts.
View Article and Find Full Text PDFG-tetrads are essential structural components required for the formation of G-quadruplexes. Replacement of G nucleobases within G-tetrads with fluorescent 8-aryl-dG residues provides diagnostic handles that are universally applicable to antiparallel G-quadruplex aptamers, as they can stabilize quadruplex folding and maintain aptamer function.
View Article and Find Full Text PDFTo study the structural and biological impact of 8-aryl-2'-deoxyguanosine adducts, an efficient protocol is required to incorporate them site-specifically into oligonucleotide substrates. Traditional phosphoramidite chemistry using 5'-O-DMT protection can be limiting because 8-aryl-dG adducts suffer from greater rates of acid-catalyzed depurination than dG and are sensitive to the acidic deblock conditions required to remove the DMT group. Herein we show that the 5'-O-2,7-dimethylpixyl (DMPx) protecting group can be used to limit acid exposure and improve DNA synthesis efficiency for DNA substrates containing 8-aryl-dG adducts.
View Article and Find Full Text PDFPhenoxyl radicals can covalently attach to the C8 site of 2'-deoxyguanosine (dG) to generate oxygen-linked biaryl ether C8-dG adducts. To assess the structural impact of an O-linked C8-dG adduct in duplex DNA, C8-phenoxy-G ((PhO)G) and C8-4-fluorophenoxy-G ((4FPhO)G) were incorporated into the G(3) position of the 12-mer NarI recognition sequence (5'-CTCGGCXCCATC, where X = G, (PhO)G, or (4FPhO)G) using solid-phase DNA synthesis with O-linked C8-dG phosphoramidites. The modified strands were hybridized to six different complementary strands that include regular base pairing to C [NarI'(C)], mismatches with G, A, T [NarI'(N)], and an abasic site [NarI'(THF)], and a 10-mer sequence to model a -2 deletion duplex [NarI'(-2)].
View Article and Find Full Text PDFThe optical, redox, and electronic properties of C(8)-heteroaryl-2'-deoxyguanosine (dG) adducts with C(8)-substituents consisting of furyl ((Fur)dG), pyrrolyl ((Pyr)dG), thienyl ((Th)dG), benzofuryl ((Bfur)dG), indolyl ((Ind)dG), and benzothienyl ((Bth)dG) are described. These adducts behave as fluorescent nucleobase probes with emission maxima from 379 to 419 nm and fluorescence quantum yields (Φ(fl)) in the 0.1-0.
View Article and Find Full Text PDF