Publications by authors named "Michael Sommersperger"

Article Synopsis
  • Recent advancements in treatments for age-related macular degeneration require precise, minimally invasive delivery methods to avoid trauma to vital eye structures.
  • Skilled surgeons face challenges due to hand tremors, prompting the development of robotic systems that utilize fiber Bragg grating (FBG) sensors to monitor forces during surgery.
  • This paper introduces a specialized dataset combining force feedback data with optical coherence tomography (OCT) images and presents a neural network model for estimating forces based on these images, highlighting the dataset's potential use.
View Article and Find Full Text PDF

In the last decade, various robotic platforms have been introduced that could support delicate retinal surgeries. Concurrently, to provide semantic understanding of the surgical area, recent advances have enabled microscope-integrated intraoperative Optical Coherent Tomography (iOCT) with high-resolution 3D imaging at near video rate. The combination of robotics and semantic understanding enables task autonomy in robotic retinal surgery, such as for subretinal injection.

View Article and Find Full Text PDF

Three decades after the first set of work on Medical Augmented Reality (MAR) was presented to the international community, and ten years after the deployment of the first MAR solutions into operating rooms, its exact definition, basic components, systematic design, and validation still lack a detailed discussion. This paper defines the basic components of any Augmented Reality (AR) solution and extends them to exemplary Medical Augmented Reality Systems (MARS). We use some of the original MARS applications developed at the Chair for Computer Aided Medical Procedures and deployed into medical schools for teaching anatomy and into operating rooms for telemedicine and surgical guidance throughout the last decades to identify the corresponding basic components.

View Article and Find Full Text PDF

Correct positioning of the endoscope is crucial for successful hip arthroscopy. Only with adequate alignment can the anatomical target area be visualized and the procedure be successfully performed. Conventionally, surgeons rely on anatomical landmarks such as bone structure, and on intraoperative X-ray imaging, to correctly place the surgical trocar and insert the endoscope to gain access to the surgical site.

View Article and Find Full Text PDF

Retinal surgery is a complex medical procedure that requires exceptional expertise and dexterity. For this purpose, several robotic platforms are currently under development to enable or improve the outcome of microsurgical tasks. Since the control of such robots is often designed for navigation inside the eye in proximity to the retina, successful trocar docking and insertion of the instrument into the eye represents an additional cognitive effort, and is therefore one of the open challenges in robotic retinal surgery.

View Article and Find Full Text PDF

The development and integration of intraoperative optical coherence tomography (iOCT) into modern operating rooms has motivated novel procedures directed at improving the outcome of ophthalmic surgeries. Although computer-assisted algorithms could further advance such interventions, the limited availability and accessibility of iOCT systems constrains the generation of dedicated data sets. This paper introduces a novel framework combining a virtual setup and deep learning algorithms to generate synthetic iOCT data in a simulated environment.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is a medical imaging modality that is commonly used to diagnose retinal diseases. In recent years, linear and radial scanning patterns have been proposed to acquire three-dimensional OCT data. These patterns show differences in A-scan acquisition density across the generated volumes, and thus differ in their suitability for the diagnosis of retinal diseases.

View Article and Find Full Text PDF

Intraoperative Optical Coherence Tomography (iOCT) has advanced in recent years to provide real-time high resolution volumetric imaging for ophthalmic surgery. It enables real-time 3D feedback during precise surgical maneuvers. Intraoperative 4D OCT generally exhibits lower signal-to-noise ratio compared to diagnostic OCT and visualization is complicated by instrument shadows occluding retinal tissue.

View Article and Find Full Text PDF

The emergence of robotics could enable ophthalmic microsurgical procedures that were previously not feasible due to the precision limits of manual delivery, for example, targeted subretinal injection. Determining the distance between the needle tip, the internal limiting membrane (ILM), and the retinal pigment epithelium (RPE) both precisely and reproducibly is required for safe and successful robotic retinal interventions. Recent advances in intraoperative optical coherence tomography (iOCT) have opened the path for 4D image-guided surgery by providing near video-rate imaging with micron-level resolution to visualize retinal structures, surgical instruments, and tool-tissue interactions.

View Article and Find Full Text PDF