Publications by authors named "Michael Somekh"

Optical metrology with picometer-scale precision in three-dimensional space is of considerable importance in modern physics and state of the art technology, optical interference is an effective method, but techniques with rapid spatial variation have the potential to enhance measurement precision, which will be required as measurement dimensions decrease. Here, the concept of the vanishingly small optical phase singularity ruler is introduced. Inspired by the well-known plumb-line technique used to locate the centroid, an analogous singularity line technique is proposed to locate the optical singularity with a precision of ~4.

View Article and Find Full Text PDF

Significance: Skin color affects light penetration leading to differences in its absorption and scattering properties. COVID-19 highlighted the importance of understanding of the interaction of light with different skin types, e.g.

View Article and Find Full Text PDF

Imaging non-invasively into the human body is currently limited by cost (MRI and CT scan), image resolution (ultrasound), exposure to ionising radiation (CT scan and X-ray), and the requirement for exogenous contrast agents (CT scan and PET scan). Optical imaging has the potential to overcome all these issues but is currently limited by imaging depth due to the scattering and absorption properties of human tissue. Skin is the first barrier encountered by light when imaging non-invasively, and therefore a clear understanding of the way that light interacts with skin is required for progress on optical medical imaging to be made.

View Article and Find Full Text PDF

In photoacoustic and ultrasound imaging, optical transducers offer a unique potential to provide higher responsivity, wider bandwidths, and greatly reduced electrical and acoustic impedance mismatch when compared with piezoelectric transducers. In this paper, we propose a total-internal-reflection-based Fabry-Pérot resonator composed of a 12-nm-thick gold layer and a dielectric resonant cavity. The resonator uses the same Kretschmann configuration as surface plasmon resonators (SPR).

View Article and Find Full Text PDF
Article Synopsis
  • * The study explores how TPPs can be controlled and directed using nanoantenna couplers, enabling polarization-controlled propagation and asymmetric double focusing with the use of Fresnel zone plates.
  • * TPPs demonstrate superior performance compared to SPPs by exhibiting higher excitation efficiency and lower propagation losses, indicating their potential for applications in integrated photonics and on-chip devices.
View Article and Find Full Text PDF

Traditional OAM generation devices are bulky and can generally only create OAM with one specific topological charge. Although metasurface-based devices have overcome the volume limitations, no tunable metasurface-based OAM generators have been demonstrated to date. Here, a dynamically tunable multi-topological charge OAM generator based on an ultrathin integrable graphene metalens is demonstrated by simulation using the detour phase technique and spatial multiplexing.

View Article and Find Full Text PDF

Light modulation has been recognized as one of the most fundamental operations in photonics. In this paper, we theoretically designed a Bloch surface wave assisted modulator for the active modulation of graphene electro-absorption. Simulations show that the strong localized electrical field generated by Bloch surface waves can significantly enhance the graphene electro-absorption up to 99.

View Article and Find Full Text PDF

This work presents an artificial intelligence enhanced orbital angular momentum (OAM) data transmission system. This system enables encoded data retrieval from speckle patterns generated by an incident beam carrying different topological charges (TCs) at the distal end of a multi-mode fiber. An appropriately trained network is shown to support up to 100 different fractional TCs in parallel with TC intervals as small as 0.

View Article and Find Full Text PDF

Metasurfaces offer diverse wavefront control by manipulating amplitude, phase, and polarization of light which is beneficial to design subwavelength scaled integrated photonic devices. Metasurfaces based tunable circular polarization (CP) beam splitting is one functionality of interest in polarization control. Here, we propose and numerically realize metasurface based spin tunable beam splitter which splits the incoming CP beam into two different directions and tune the splitting angles by switching the handedness of incident light polarization.

View Article and Find Full Text PDF

Quasi-two-dimensional (2D) layered organic-inorganic hybrid perovskites have attracted extensive attention, owing to their excellent optoelectronic tunability and moisture stability compared with three-dimensional perovskite counterparts and show great potential for application in photodetectors (PDs). However, owing to the unavoidable grain boundary defects of perovskite polycrystalline films, the photocurrent is limited by poor light absorption and charge mobility. Therefore, the preparation of quasi-2D perovskite films with strong light trapping and high charge mobility has been challenging.

View Article and Find Full Text PDF

Strong coupling between the resonant modes can give rise to many resonant states, enabling the manipulation of light-matter interactions with more flexibility. Here, we theoretically propose a coupled resonant system where an anisotropic borophene localized plasmonic (BLP) and Bloch surface wave (BSW) can be simultaneously excited. This allows us to manipulate the spectral response of the strong BLP-BSW coupling with exceptional flexibility in the near infrared region.

View Article and Find Full Text PDF

Intriguing anisotropic electrical and optoelectrical properties in two-dimensional (2D) materials are currently gaining increasing interest both for fundamental research and emerging optoelectronic devices. Identifying promising new 2D materials with low-symmetry structures will be rewarding in the development of polarization-integrated nanodevices. In this work, the anisotropic electron transport and optoelectrical properties of multilayer 2D ternary TaNiSe were systematically researched.

View Article and Find Full Text PDF

Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision.

View Article and Find Full Text PDF

The ever-increasing demand for miniaturized optical systems has placed stringent requirements on the core element: lenses. Developing ultrathin flat lenses with a varifocal capability and broadband spectral response is critical for diverse applications, but remains challenging and has been the focus of intensive research. The recent demonstration of tunable focal length for a single wavelength with metalenses marked an important milestone for transforming the complex and bulky tunable lens kit into a single flat lens.

View Article and Find Full Text PDF

In this Letter, we theoretically propose a coupled borophene plasmonic system, where an anisotropic localized plasmonic (LP) mode and a delocalized guided plasmonic (DGP) mode can be simultaneously excited. This allows us to manipulate the optical response of the strong LP-DGP coupling with exceptional flexibility in the near-infrared region, which is not possible with the conventional metallic plasmonic structures, and overcomes some shortcomings of coupled structures based on the other 2D materials. Specifically, the spatially LP-DGP coupling can arise when the system is driven into the strong coupling regime; this gives rise to a transparency window which can be well described by a coupled oscillation model.

View Article and Find Full Text PDF

The reflected back focal plane from a microscope objective is known to provide excellent information of material properties and can be used to analyze the generation of surface plasmons and surface waves in a localized region. Most analysis has concentrated on direct measurement of the reflected intensity in the back focal plane. By accessing the phase information, we show that examination in the back focal plane becomes considerably more powerful allowing the reconstructed field to be filtered, propagated and analyzed in different domains.

View Article and Find Full Text PDF

Phase and polarization singularities are important degrees of freedom for electromagnetic field manipulation. Detecting these singularities is essential for modern optics, but it is still a challenge, especially in integrated optical systems. In this paper, we propose an on-chip plasmonic spin-Hall nanograting structure that simultaneously detects both the polarization and phase singularities of the incident cylindrical vortex vector beam (CVVB).

View Article and Find Full Text PDF

Bloch surface wave (BSW) can be considered as the dielectric analogue of surface plasmon polariton (SPP) with less loss since it is sustained at the surface of a truncated dielectric multilayer. As dielectric materials show nearly no ohmic loss, BSW can propagates much farther compared to SPP, and thus is beneficial for planar optical devices. In this paper, we study the spin-orbital interaction between incident beam and BSW.

View Article and Find Full Text PDF

The light reflected into the back focal plane of a microscope objective allows one to gather a great deal of information about the resonant modes excited on a sample. These dips represent modes excited on the sample, which are related to both the material properties and the structure. Automatic identification of these resonances is a vital stage in developing automated machine-learning techniques for high-throughput sample characterization.

View Article and Find Full Text PDF

In this Letter, we present a spatially resolved pump-probe microscope based on a digital micromirror device (DMD). The microscope system enables the measurements of ultrafast transient processes at arbitrarily selected regions in a 3-D specimen. To achieve random-access scanning, the wavefront of the probe beam is modulated by the DMD via binary holography.

View Article and Find Full Text PDF

A lateral shearing interferometric technique combined with an 11.6 μm polydimethylsiloxane (PDMS) transparent thin film is proposed and demonstrated for optical detection of ultrasound. We experimentally report the device change of reflectivity with pressure of 5.

View Article and Find Full Text PDF

The localized properties of surface plasmons (SPs) and surface waves can be measured with a modified confocal microscope. An interference signal arises from a locally generated reference close to normal incidence and the beam that forms the surface wave. A spatial light modulator can impose different phase shifts on the part of the incident light to recover the properties of the SP.

View Article and Find Full Text PDF

We present a common-path surface plasmon interferometer with radial polarization. We show how the V(z) effect, the output of the microscope versus defocus z, can be derived utilizing a radially polarized illumination and a virtual annulus. The measurement of the V(z) effect gives a strong signature of the surface plasmon propagation, which is functionally related to the material properties.

View Article and Find Full Text PDF

In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave.

View Article and Find Full Text PDF

We investigate the performance of surface plasmon and Fabry-Perot modes formed between two closely spaced layers. The motivation for this study is twofold: first, to look for modes that may be excited at lower incident angles compared to the usual Kretschmann configuration with similar or superior refractive index responsivity and, second, to develop a simple and applicable method to study these structures over a wide range of separations without recourse to the construction of ad hoc structures. Using back focal plane observation and appropriate signal processing, we show results for the Otto configuration at visible wavelengths at a range of separations not reported hitherto.

View Article and Find Full Text PDF