Publications by authors named "Michael Sokolov"

Raman spectroscopy, a robust and non-invasive analytical method, has demonstrated significant potential for monitoring biopharmaceutical production processes. Its ability to provide detailed information about molecular vibrations makes it ideal for the detection and quantification of therapeutic proteins and critical control parameters in complex biopharmaceutical mixtures. However, its application in fermentations has been hindered by the inherent strong fluorescence background from the cells.

View Article and Find Full Text PDF

The use of hybrid models is extensively described in the literature to predict the process evolution in cell cultures. These models combine mechanistic and machine learning methods, allowing the prediction of complex process behavior, in the presence of many process variables, without the need to collect a large amount of data. Hybrid models cannot be directly used to predict final product critical quality attributes, or CQAs, because they are usually measured only at the end of the process, and more mechanistic knowledge is needed for many classes of CQAs.

View Article and Find Full Text PDF

In addition to activity, successful biological drugs must exhibit a series of suitable developability properties, which depend on both protein sequence and buffer composition. In the context of this high-dimensional optimization problem, advanced algorithms from the domain of machine learning are highly beneficial in complementing analytical screening and rational design. Here, we propose a Bayesian optimization algorithm to accelerate the design of biopharmaceutical formulations.

View Article and Find Full Text PDF

The biopharmaceutical industries are continuously faced with the pressure to reduce the development costs and accelerate development time scales. The traditional approach of heuristic-based or platform process-based optimization is soon getting obsolete, and more generalized tools for process development and optimization are required to keep pace with the emerging trends. Thus, advanced model-based methods that can reduce the can ensure accelerated development of robust processes with minimal experiments are necessary.

View Article and Find Full Text PDF

Successful biologics must satisfy multiple properties including activity and particular physicochemical features that are globally defined as developability. These multiple properties must be simultaneously optimized in a very broad design space of protein sequences and buffer compositions. In this context, artificial intelligence (AI), and especially machine learning (ML), have great potential to accelerate and improve the optimization of protein properties, increasing their activity and safety as well as decreasing their development time and manufacturing costs.

View Article and Find Full Text PDF

In 2020, the Covid-19 pandemic resulted in a worldwide challenge without an evident solution. Many persons and authorities involved befriended the value of available data and established expertise to make decisions under time pressure. This omnipresent example is used to illustrate the decision-making procedure in biopharmaceutical manufacturing.

View Article and Find Full Text PDF

In a decade when Industry 4.0 and quality by design are major technology drivers of biopharma, automated and adaptive process monitoring and control are inevitable requirements and model-based solutions are key enablers in fulfilling these goals. Despite strong advancement in process digitalization, in most cases, the generated datasets are not sufficient for relying on purely data-driven methods, whereas the underlying complex bioprocesses are still not completely understood.

View Article and Find Full Text PDF

Multivariate latent variable methods have become a popular and versatile toolset to analyze bioprocess data in industry and academia. This work spans such applications from the evaluation of the role of the standard process variables and metabolites to the metabolomics level, that is, to the extensive number metabolic compounds detectable in the extracellular and intracellular domains. Given the substantial effort currently required for the measurement of the latter groups, a tailored methodology is presented that is capable of providing valuable process insights as well as predicting the glycosylation profile based on only four experiments measured over 12 cell culture days.

View Article and Find Full Text PDF

In this age of technology, the vision of manufacturing industries built of smart factories is not a farfetched future. As a prerequisite for Industry 4.0, industrial sectors are moving towards digitalization and automation.

View Article and Find Full Text PDF

Due to the lack of complete understanding of metabolic networks and reaction pathways, establishing a universal mechanistic model for mammalian cell culture processes remains a challenge. Contrarily, data-driven approaches for modeling these processes lack extrapolation capabilities. Hybrid modeling is a technique that exploits the synergy between the two modeling methods.

View Article and Find Full Text PDF

On-line monitoring tools for downstream chromatographic processing (DSP) of biotherapeutics can enable fast actions to correct for disturbances in the upstream, gain process understanding, and eventually lead to process optimization. While UV/Vis spectroscopy is mostly assessing the protein's amino acid composition and the application of Fourier transform infrared spectroscopy is limited due to strong water interactions, Raman spectroscopy is able to assess the secondary and tertiary protein structure without significant water interactions. The aim of this work is to implement the Raman technology in DSP, by designing an in-line flow cell with a reduced dead volume of 80 μL and a reflector to increase the signal intensity as well as developing a chemometric modeling path.

View Article and Find Full Text PDF

This work presents a novel multivariate statistical algorithm, Decision Tree-PLS (DT-PLS), to improve the prediction and understanding of dynamic processes based on local partial least square regression (PLSR) models for characteristic process groups defined based on Decision Tree (DT) analysis. The DT-PLS algorithm is successfully applied to two different cell culture data sets, one obtained from bioreactors of 3.5 L lab scale and the other obtained from the 15 ml ambr microbioreactor system.

View Article and Find Full Text PDF

Mini-bioreactor systems enabling automatized operation of numerous parallel cultivations are a promising alternative to accelerate and optimize bioprocess development allowing for sophisticated cultivation experiments in high throughput. These include fed-batch and continuous cultivations with multiple options of process control and sample analysis which deliver valuable screening tools for industrial production. However, the model-based methods needed to operate these robotic facilities efficiently considering the complexity of biological processes are missing.

View Article and Find Full Text PDF

The development of cell culture processes is highly complex and requires a large number of experiments on various scales to define the design space of the final process and fulfil the regulatory requirements. This work follows an almost complete process development cycle for a biosimilar monoclonal antibody, from high throughput screening and optimization to scale-up and process validation. The key goal of this analysis is to apply tailored multivariate tools to support decision-making at every stage of process development.

View Article and Find Full Text PDF

This work investigates the insights and understanding which can be deduced from predictive process models for the product quality of a monoclonal antibody based on designed high-throughput cell culture experiments performed at milliliter (ambr-15 ) scale. The investigated process conditions include various media supplements as well as pH and temperature shifts applied during the process. First, principal component analysis (PCA) is used to show the strong correlation characteristics among the product quality attributes including aggregates, fragments, charge variants, and glycans.

View Article and Find Full Text PDF

Rational and high-throughput optimization of mammalian cell culture media has a great potential to modulate recombinant protein product quality. We present a process design method based on parallel design-of-experiment (DoE) of CHO fed-batch cultures in 96-deepwell plates to modulate monoclonal antibody (mAb) glycosylation using medium supplements. To reduce the risk of losing valuable information in an intricate joint screening, 17 compounds were separated into five different groups, considering their mode of biological action.

View Article and Find Full Text PDF

This work presents a multivariate methodology combining principal component analysis, the Mahalanobis distance and decision trees for the selection of process factors and their levels in early process development of generic molecules. It is applied to a high throughput study testing more than 200 conditions for the production of a biosimilar monoclonal antibody at microliter scale. The methodology provides the most important selection criteria for the process design in order to improve product quality towards the quality attributes of the originator molecule.

View Article and Find Full Text PDF

This work presents a sequential data analysis path, which was successfully applied to identify important patterns (fingerprints) in mammalian cell culture process data regarding process variables, time evolution and process response. The data set incorporates 116 fed-batch cultivation experiments for the production of a Fc-Fusion protein. Having precharacterized the evolutions of the investigated variables and manipulated parameters with univariate analysis, principal component analysis (PCA) and partial least squares regression (PLSR) are used for further investigation.

View Article and Find Full Text PDF