Publications by authors named "Michael Skuhersky"

Background: Determining cell identity in volumetric images of tagged neuronal nuclei is an ongoing challenge in contemporary neuroscience. Frequently, cell identity is determined by aligning and matching tags to an "atlas" of labeled neuronal positions and other identifying characteristics. Previous analyses of such C.

View Article and Find Full Text PDF

Accurate predictions of 3-dimensional protein structures by AlphaFold2 is a game-changer for biology, especially for structural biology. Here we present the studies of several native chemokine receptors including CCR5, CCR9, CXCR2 and CXCR4 determined by X-ray crystallography, and their water-soluble QTY counter parts predicted by AlphaFold2. In the native structures, there are hydrophobic amino acids leucine (L), isoleucine (I), valine (V) and phenylalanine (F) in the transmembrane helices.

View Article and Find Full Text PDF
Article Synopsis
  • G protein-coupled receptors (GPCRs) are essential for various biological functions and are significant drug targets due to their role in numerous diseases.
  • The study introduces a QTY code that replaces specific hydrophobic amino acids in the GPCR CXCR4, making it more hydrophilic while maintaining its ability to bind to its ligand, CXCL12.
  • This advancement allows for enhanced GPCR and membrane protein research, potentially leading to improved drug designs and therapeutic applications.
View Article and Find Full Text PDF

Chemokine receptors are of great interest as they play a critical role in many immunological and pathological processes. The ability to study chemokine receptors in aqueous solution without detergent would be significant because natural receptors require detergents to become soluble. We previously reported using the QTY code to design detergent-free chemokine receptors.

View Article and Find Full Text PDF

Structure and function studies of membrane proteins, particularly G protein-coupled receptors and multipass transmembrane proteins, require detergents. We have devised a simple tool, the QTY code (glutamine, threonine, and tyrosine), for designing hydrophobic domains to become water soluble without detergents. Here we report using the QTY code to systematically replace the hydrophobic amino acids leucine, valine, isoleucine, and phenylalanine in the seven transmembrane α-helices of CCR5, CXCR4, CCR10, and CXCR7.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: