The constant emergence of new viral pathogens underscores the need for continually evolving, effective antiviral drugs. A key challenge is identifying compounds that are both efficacious and safe, as many candidates fail during development due to unforeseen toxicity. To address this, the embryonic zebrafish morphology, mortality, and behavior (ZBE) screen and the SYSTEMETRIC® Cell Health Screen (CHS) were employed to evaluate the safety of 403 compounds from the Cayman Antiviral Screening Library.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are a diverse class of chemicals that occur in complex mixtures including parent and substituted PAHs. To understand the hazard posed by complex environmental PAH mixtures, we must first understand the structural drivers of activity and mode of action of individual PAHs. Understanding the toxicity of alkylated PAHs is important as they often occur in higher abundance in environmental matrices and can be more biologically active than their parent compounds.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity.
View Article and Find Full Text PDFMethods Mol Biol
September 2023
Zebrafish-based high-throughput screening has been extensively used to study toxicological profiles of individual chemicals and mixtures, identify novel toxicants, and study modes of action to prioritize chemicals for further testing and policy decisions. Within this chapter, we describe a protocol for automated zebrafish developmental high-throughput screening in our laboratory, with emphasis on exposure setups, morphological and behavioral readouts, and quality control.
View Article and Find Full Text PDFThe existence of thousands of per- and polyfluoroalkyl substances (PFAS) and evidence that some cause adverse health effects has created immense need to better understand PFAS toxicity and to move beyond one-chemical-at-a-time approaches to hazard assessment for this chemical class. The zebrafish model enables rapid assessment of large libraries of PFAS, powerful comparison of compounds in a single in vivo system, and evaluation across life stages and generations, and has led to significant advances in PFAS research in recent years. The focus of this review is to assess contemporary findings regarding PFAS toxicokinetics, toxicity and apical adverse health outcomes, and potential modes of action using the zebrafish model.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants and are associated with human disease. Canonically, many PAHs induce toxicity via activation of the aryl hydrocarbon receptor (AHR) pathway. While the interaction between PAHs and the AHR is well-established, understanding which AHR-regulated transcriptional effects directly result in observable phenotypes and which are adaptive or benign is important to better understand PAH toxicity.
View Article and Find Full Text PDFThe rapid deployment of the fifth-generation (5G) spectrum by the telecommunication industry is intended to promote better connectivity and data integration among various industries. However, concerns among the public about the safety and health effects of radiofrequency radiations (RFRs) emitted from the newer-generation cell phone frequencies remain, partly due to the lack of robust scientific data. Previously, we used developmental zebrafish to model the bioactivity of 3.
View Article and Find Full Text PDFZebrafish behavioral assays are commonly used to identify and study environmental stressors that elicit adverse effects on neurobehavior. Behavioral assay platforms are available for multiple life stages (embryonic, juvenile, and adults) and are robust in detecting stressor-induced acute effects on neurodevelopment as well as long term deficits in sensory mechanisms, social behavior, learning, memory, and neurodegenerative diseases. Within this chapter, we present an overview of zebrafish behavioral assays that are commonly used to study environmental neurotoxicants.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a class of widely used chemicals with limited human health effects data relative to the diversity of structures manufactured. To help fill this data gap, an extensive in vivo developmental toxicity screen was performed on 139 PFAS provided by the US EPA. Dechorionated embryonic zebrafish were exposed to 10 nominal water concentrations of PFAS (0.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in environmental and biological samples and cause adverse health effects. Studies have predominately focused on long-chain PFAS, with far fewer addressing short-chain alternatives. This study leveraged embryonic zebrafish to investigate developmental toxicity of a short-chain series: perfluorobutane sulfonate (PFBS), perfluoropentanoic acid (PFPeA), perfluorobutane sulfonamide (FBSA), and 4:2 fluorotelomer sulfonic acid (4:2 FTS).
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in the environment, and some pose significant human and environmental health concerns globally. While some PFAS induce adverse health effects, relatively few toxicological studies adequately address the broad structural diversity of this chemical class. In the current study, we evaluated 58 individual PFAS spanning 14 structural subclasses and 2 mixtures at single concentrations for developmental toxicity in zebrafish using highly sensitive behavior endpoints.
View Article and Find Full Text PDFThe ubiquitous use of flame retardant chemicals (FRCs) in the manufacture of many consumer products leads to inevitable environmental releases and human exposures. Studying toxic effects of FRCs as a group is challenging since they widely differ in physicochemical properties. We previously used zebrafish as a model to screen 61 representative FRCs and showed that many induced behavioral and teratogenic effects, with aryl phosphates identified as the most active.
View Article and Find Full Text PDFVaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts.
View Article and Find Full Text PDFThe embryonic zebrafish is a powerful tool for high-throughput screening of chemicals. While this model has significant potential for use in safety assessments and chemical prioritization, a lack of exposure protocol harmonized across laboratories has limited full model adoption. To assess the potential that exposure protocols alter chemical bioactivity, we screened a set of eight chemicals and one 2D nanomaterial across four different regimens: (1) the current Tanguay laboratory's standard protocol of dechorionated embryos and static exposure in darkness; (2) exposure with chorion intact; (3) exposure under a 14 h light: 10 h dark cycle; and (4) exposure with daily chemical renewal.
View Article and Find Full Text PDFFlame retardant chemicals (FRCs) commonly added to many consumer products present a human exposure burden associated with adverse health effects. Under pressure from consumers, FRC manufacturers have adopted some purportedly safer replacements for first-generation brominated diphenyl ethers (BDEs). In contrast, second and third-generation organophosphates and other alternative chemistries have limited bioactivity data available to estimate their hazard potential.
View Article and Find Full Text PDFThe rapid deployment of 5G spectrum by the telecommunication industry is intended to promote better connectivity and data integration among various industries. However, since exposures to radio frequency radiations (RFR) >2.4 GHz are still uncommon, concerns about their potential health impacts are ongoing.
View Article and Find Full Text PDFBehavior phenotypes are a powerful means of uncovering subtle xenobiotic chemical impacts on vertebrate nervous system development. Rodents manifest complex and informative behavior phenotypes but are generally not practical models in which to screen large numbers of chemicals. Zebrafish recapitulate much of the behavioral complexity of higher vertebrates, develop externally and are amenable to assay automation.
View Article and Find Full Text PDFFood Chem Toxicol
February 2020
Since 2007, electronic cigarette (e-cigarette) sales in the U.S. have surpassed those of tobacco cigarettes.
View Article and Find Full Text PDFThe insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) was recently approved by the U.S. Army to replace cyclotrimethylene trinitramine (RDX) in conventional explosives.
View Article and Find Full Text PDFDisinfection to protect human health occurs at drinking water and wastewater facilities through application of non-selective oxidants including chlorine. Oxidants also transform organic material and form disinfection by-products (DBPs), many of which are halogenated and cyto- and genotoxic. Only a handful of assays have been used to compare DBP toxicity, and researchers are unsure which DBP(s) drive the increased cancer risk associated with drinking chlorinated water.
View Article and Find Full Text PDFExposure of cells to colloidal nanoparticles (NPs) can have concentration-dependent harmful effects. Mostly, such effects are monitored with biochemical assays or probes from molecular biology, i.e.
View Article and Find Full Text PDFBenzo[a]pyrene (B[a]P) is a well-known genotoxic polycylic aromatic compound whose toxicity is dependent on signaling via the aryl hydrocarbon receptor (AHR). It is unclear to what extent detrimental effects of B[a]P exposures might impact future generations and whether transgenerational effects might be AHR-dependent. This study examined the effects of developmental B[a]P exposure on 3 generations of zebrafish.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are produced from incomplete combustion of organic materials or fossil fuels, and are present in crude oil and coal; therefore, they are ubiquitous environmental contaminants present in urban air, dust, soil, and water. It is widely recognized that PAHs pose risks to human health, especially for the developing fetus and infant where PAH exposures have been linked to in-utero mortality, cardiovascular effects, and lower intelligence. Using the zebrafish model, we evaluated the developmental toxicity of benzo[a]pyrene (B[a]P).
View Article and Find Full Text PDF