Motivation: Signaling pathways capable of switching between two states are ubiquitous within living organisms. They provide the cells with the means to produce reversible or irreversible decisions. Switch-like behavior of biological systems is realized through biochemical reaction networks capable of having two or more distinct steady states, which are dependent on initial conditions.
View Article and Find Full Text PDFAlthough seasonal influenza vaccines block most predominant influenza types and subtypes, humans still remain vulnerable to waves of seasonal and new potential pandemic influenza viruses for which no immunity may exist because of viral antigenic drift and/or shift. Previously, we described a human monoclonal antibody (hMAb), KPF1, which was produced in human embryonic kidney 293T cells (KPF1-HEK) with broad and potent neutralizing activity against H1N1 influenza A viruses (IAV) in vitro, and prophylactic and therapeutic activities in vivo. In this study, we produced hMAb KPF1 in tobacco plants (KPF1-Antx) and demonstrated how the plant-produced KPF1-Antx hMAb possesses similar biological activity compared with the mammalian-produced KPF1-HEK hMAb.
View Article and Find Full Text PDFThe ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2012
A change in mRNA stability alters the abundance of mRNA available for translation and is emerging as a critical pathway influencing gene expression. Variations in the stability of functional and regulatory mitochondrial proteins may contribute to the divergent mitochondrial densities observed in striated muscle. Thus we hypothesized that the stability of mRNAs encoding for regulatory nuclear and mitochondrial transcription factors would be inversely proportional to muscle oxidative capacity and would be facilitated by the activity of RNA binding proteins (RBPs).
View Article and Find Full Text PDFThe conserved region 3 (CR3) portion of the human adenovirus (HAdV) 5 E1A protein functions as a potent transcriptional activator that induces expression of viral early genes during infection. Expression of HAdV-5 CR3 in the yeast Saccharomyces cerevisiae inhibits growth, as do the corresponding regions of the HAdV-3, 4, 9, 12 and 40 E1A proteins, which represent the remaining five HAdV subgroups. Growth inhibition is alleviated by disruption of the SAGA transcriptional regulatory complex, suggesting that CR3 targets the yeast SAGA complex.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors.
View Article and Find Full Text PDFWe have determined distinct roles for different proteasome complexes in adenovirus (Ad) E1A-dependent transcription. We show that the 19S ATPase, S8, as a component of 19S ATPase proteins independent of 20S (APIS), binds specifically to the E1A transactivation domain, conserved region 3 (CR3). Recruitment of APIS to CR3 enhances the ability of E1A to stimulate transcription from viral early gene promoters during Ad infection of human cells.
View Article and Find Full Text PDFUnliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure.
View Article and Find Full Text PDFThe N-terminal/conserved region 1 (CR1) portion of the human adenovirus (Ad) 5 E1A protein was previously shown to inhibit growth in the simple eukaryote Saccharomyces cerevisiae. We now demonstrate that the corresponding regions of the E1A proteins of Ad3,-4,-9,-12, and -40, which represent the remaining five Ad subgroups, also inhibit yeast growth. These results suggest that the E1A proteins of all six human Ad subgroups share a common cellular target(s) conserved in yeast.
View Article and Find Full Text PDFIn mammalian cells, the human adenovirus type 5 early region 1A (E1A) oncoprotein functions as a thyroid hormone (TH)-dependent activator of the thyroid hormone receptor (TR). Interestingly, in the cellular context of the yeast Saccharomyces cerevisiae, E1A acts as a TR-specific constitutive coactivator that is down-regulated by TH. TH reduces the interaction of E1A with the TR in yeast but not HeLa cells.
View Article and Find Full Text PDFExpression of the adenovirus E1A protein in the simple eukaryote Saccharomyces cerevisiae inhibits growth. We tested four regions of E1A that alter growth and transcription in mammalian cells for their effects in yeast when expressed as fusions to the Gal4p DNA binding domain. Expression of the N-terminal/conserved region (CR) 1 or CR3, but not of the CR2 or the C-terminal portion of E1A, inhibited yeast growth.
View Article and Find Full Text PDFAdenovirus type 5 E1A proteins interact with cellular regulators of transcription to reprogram gene expression in the infected or transformed cell. Although E1A also interacts with DNA directly in vitro, it is not clear how this relates to its function in vivo. The N-terminal conserved regions 1, 2 and 3 and the C-terminal portions of E1A were prepared as purified recombinant proteins and analyses showed that only the C-terminal region bound DNA in vitro.
View Article and Find Full Text PDF