Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a method to apply forces to the nucleus of living embryos to measure the force generated inside the cell.
View Article and Find Full Text PDFGenomic information must be faithfully transmitted into two daughter cells during mitosis. To ensure the transmission process, interphase chromatin is further condensed into mitotic chromosomes. Although protein factors like condensins and topoisomerase IIα are involved in the assembly of mitotic chromosomes, the physical bases of the condensation process remain unclear.
View Article and Find Full Text PDFOrganelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a novel method to apply forces to the nucleus of living, wild-type embryos to measure the force generated inside the cell.
View Article and Find Full Text PDFGenomic information must be faithfully transmitted into two daughter cells during mitosis. To ensure the transmission process, interphase chromatin is further condensed into mitotic chromosomes. Although protein factors like condensins and topoisomerase IIα are involved in the assembly of mitotic chromosomes, the physical bases of the condensation process remain unclear.
View Article and Find Full Text PDFHerein, we give an overview of several less explored structural and optical characterization techniques useful for biomaterials. New insights into the structure of natural fibers such as spider silk can be gained with minimal sample preparation. Electromagnetic radiation (EMR) over a broad range of wavelengths (from X-ray to THz) provides information of the structure of the material at correspondingly different length scales (nm-to-mm).
View Article and Find Full Text PDFPolarizing microscopy brought about many advancements in the science of liquid crystals and other soft materials, including those of biological origin. Recent developments in optics and computer-based analysis enabled a new generation of quantitative polarizing microscopy which produces spatial maps of the optic axis. Unfortunately, most of the available approaches require a long acquisition time of multiple images which are then analyzed to produce the map.
View Article and Find Full Text PDFOver the past two decades, fibrillar collagen reorganization parameters such as the amount of collagen deposition, fiber angle and alignment have been widely explored in numerous studies. These parameters are now widely accepted as stromal biomarkers and linked to disease progression and survival time in several cancer types. Despite all these advances, there has not been a significant effort to make it possible for clinicians to explore these biomarkers without adding steps to the clinical workflow or by requiring high-cost imaging systems.
View Article and Find Full Text PDFAssessment of intratumoral heterogeneity and tumor-host interaction within the tumor microenvironment is becoming increasingly important for innovative cancer therapy decisions because of the unique information it can generate about the state of the disease. However, its assessment and quantification are limited by ambiguous definitions of the tumor-host interface and by human cognitive capacity in current pathology practice. Advances in machine learning and artificial intelligence have opened the field of digital pathology to novel tissue image analytics and feature extraction for generation of high-capacity computational disease management models.
View Article and Find Full Text PDFThe basilar membrane (BM) of the mammalian cochlea constitutes a spiraling acellular ribbon that is intimately attached to the organ of Corti. Its graded stiffness, increasing from apex to the base of the cochlea provides the mechanical basis for sound frequency analysis. Despite its central role in auditory signal transduction, virtually nothing is known about the BM's structural development.
View Article and Find Full Text PDFHow asexual reproduction shapes transposable element (TE) content and diversity in eukaryotic genomes remains debated. We performed an initial survey of TE load and diversity in the putative ancient asexual ostracod . We examined long contiguous stretches of DNA in clones from a genomic fosmid library, totaling about 2.
View Article and Find Full Text PDFIntranuclear birefringent inclusions (IBI) found in various cell types in paraffin-embedded tissue sections have long been considered to be a tissue processing artifact, although an association with biological processes has been suggested. We applied polychromatic polarization microscopy to image their spatial organization. Our study provides evidence that IBI are caused by liquid paraffin-macromolecular crystals formed during paraffin-embedding procedures within cells and potentially reflect an active transcriptional status.
View Article and Find Full Text PDFThe pen, or gladius, of the squid is an internalized shell. It serves as a site of attachment for important muscle groups and as a protective barrier for the visceral organs. The pen's durability and flexibility are derived from its unique composition of chitin and protein.
View Article and Find Full Text PDFAlthough chromatin organization and dynamics play a critical role in gene transcription, how they interplay remains unclear. To approach this issue, we investigated genome-wide chromatin behavior under various transcriptional conditions in living human cells using single-nucleosome imaging. While transcription by RNA polymerase II (RNAPII) is generally thought to need more open and dynamic chromatin, surprisingly, we found that active RNAPII globally constrains chromatin movements.
View Article and Find Full Text PDFIn eukaryotic cells, highly condensed inactive/silenced chromatin has long been called "heterochromatin." However, recent research suggests that such regions are in fact not fully transcriptionally silent and that there exists only a moderate access barrier to heterochromatin. To further investigate this issue, it is critical to elucidate the physical properties of heterochromatin such as its total density in live cells.
View Article and Find Full Text PDFWe describe the principles of using orientation-independent differential interference contrast (OI-DIC) microscopy for mapping optical path length (OPL). Computation of the scalar two-dimensional OPL map is based on an experimentally received map of the OPL gradient vector field. Two methods of contrast enhancement for the OPL image, which reveal hardly visible structures and organelles, are presented.
View Article and Find Full Text PDFIn 1948, Shinya Inoué arrived in the United States for graduate studies at Princeton. A year later he came to Woods Hole, starting a long tradition of summer research at the Marine Biological Laboratory (MBL), which quickly became Inoué's scientific home. Primed by his Japanese mentor, Katsuma Dan, Inoué followed Dan's mantra to work with healthy, living cells, on a fundamental problem (mitosis), with a unique tool set that he refined for precise and quantitative observations (polarized light microscopy), and a fresh and brilliant mind that was unafraid of challenging current dogma.
View Article and Find Full Text PDFInterference of two combined white light beams produces Newton colors if one of the beams is retarded relative to the other by from 400 nm to 2000 nm. In this case the corresponding interfering spectral components are added as two scalars at the beam combination. If the retardance is below 400 nm the two-beam interference produces grey shades only.
View Article and Find Full Text PDFIn order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells.
View Article and Find Full Text PDFPolarized light microscopy provides unique opportunities for analyzing the molecular order in man-made and natural materials, including biological structures inside living cells, tissues, and whole organisms. 20 years ago, the LC-PolScope was introduced as a modern version of the traditional polarizing microscope enhanced by liquid crystal devices for the control of polarization, and by electronic imaging and digital image processing for fast and comprehensive image acquisition and analysis. The LCPolScope is commonly used for birefringence imaging, analyzing the spatial and temporal variations of the differential phase delay in ordered and transparent materials.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2013
We describe a quantitative orientation-independent differential interference contrast (DIC) microscope, which allows bias retardation to be modulated and shear directions to be switched rapidly without any mechanical movement. The shear direction is switched by a regular liquid-crystal cell sandwiched between two standard DIC prisms. Another liquid-crystal cell modulates the bias.
View Article and Find Full Text PDFConventional DIC microscope shows the two-dimensional distribution of optical path length gradient encountered along the shear direction between two interfering beams. It is therefore necessary to rotate unknown objects in order to examine them at several orientations. We built new DIC beam shearing assembly, which allows the bias to be modulated and shear directions to be switched rapidly without any mechanically rotating the specimen or the prisms.
View Article and Find Full Text PDF