Publications by authors named "Michael Sepaniak"

The use of nanomachining methods capable of reproducible construction of nano-arrayed devices have revolutionized the field of plasmonic sensing by the introduction of a diversity of rationally engineered designs. Significant strides have been made to fabricate plasmonic platforms with tailored interparticle gaps to improve their performance for surface-enhanced Raman scattering (SERS) applications. Over time, a dichotomy has emerged in the implementation of SERS for analytical applications, the construction of substrates, optimization of interparticle spacing as a means to optimize electromagnetic field enhancement at the localized surface plasmon level, and the substrate sensitivity over extended areas to achieve quantitative performance.

View Article and Find Full Text PDF

There is an ever-growing need for detection methods that are both sensitive and efficient, such that reagent and sample consumption is minimized. Nanopillar arrays offer an attractive option to fill this need by virtue of their small scale in conjunction with their field enhancement intensity gains. This work investigates the use of nanopillar substrates for the detection of the uranyl ion and DNA, two analytes unalike but for their low quantum efficiencies combined with the need for high-throughput analyses.

View Article and Find Full Text PDF

We introduce a chemical sensing technology, named ChIMES (Chemical Identification through Magneto-Elastic Sensing), that can detect a broad range of targets and that has the capability of untethered communication through a metallic or nonmetallic barrier. These features enable many applications in which penetrations into the sampled environment are unwanted or infeasible because of health, safety, or environmental concerns, such as following the decomposition of a dangerous material in a sealed container. The sensing element is passive and consists of a target response material hard-coupled to a magnetoelastic wire.

View Article and Find Full Text PDF

A fundamental problem with efficiency in capillary action driven planar chromatography results from diminishing flow rates as development proceeds, giving rise to molecular diffusion related band dispersion for most sample types. Overpressure and electrokinetic means to speed flow have been used successfully in TLC. We explore the use of centrifugal force (CF) to drive flow for reduced-dimension planar platforms (ultra-TLC, low micrometer features, and nano-TLC, nanoscale features).

View Article and Find Full Text PDF

Sensitive detection of harmful chemicals in industrial applications is pertinent to safety. In this work, we demonstrate the use of a sensitive silicon microcantilever (MC) system with a porous silicon oxide layer deposited on the active side of the MCs that have been mechanically manipulated to increase sensitivity. Included is the evaluation of porous silicon oxide present on different geometries of MCs and exposed to varying concentrations of hydrogen fluoride in humid air.

View Article and Find Full Text PDF

The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas.

View Article and Find Full Text PDF

Simplified lab-on-a-chip techniques are desirable for quick and efficient detection of analytes of interest in the field. The following work involves the use of deterministic pillar arrays on the micro-scale as a platform to separate compounds, and the use of Ag colloid within the arrays as a source of increased signal via surface enhanced Raman spectroscopy (SERS). One problem traditionally seen with SERS surfaces containing Ag colloid is oxidation; however, our platforms are superhydrophobic, reducing the amount of oxidation taking place on the surface of the Ag colloid.

View Article and Find Full Text PDF

This work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50-250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold.

View Article and Find Full Text PDF

An advantage of separation platforms based on deterministic micro- and nano-fabrications, relative to traditional systems based on packed beds of particles, is the exquisite control of all morphological parameters. For example, with planar platforms based on lithographically-prepared pillar arrays, the size, shape, height, geometric arrangement, and inter pillar gaps can be independently adjusted. Since the inter pillar gap is expected to be important in determining resistance to mass transfer in the mobile phase as well as the flow rate, which influences the mass transfer effect and axial diffusion, we herein study the effect of reducing inter pillar gaps on capillary action-based flow and band dispersion.

View Article and Find Full Text PDF

The unique properties associated with beryllium metal ensures the continued use in many industries despite the documented health and environmental risks. While engineered safeguards and personal protective equipment can reduce risks associated with working with the metal, it has been mandated by the Environmental Protection Agency (EPA) and Occupational Safety and Health Administration (OSHA) that the workplace air and surfaces must be monitored for toxic levels. While many methods have been developed to monitor levels down to the low μg/m(3), the complexity and expense of these methods have driven the investigation into alternate methodologies.

View Article and Find Full Text PDF

The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.

View Article and Find Full Text PDF

The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems.

View Article and Find Full Text PDF

Silicon nanopillars are important building elements for innovative nanoscale systems with unique optical, wetting, and chemical separation functionalities. However, technologies for creating expansive pillars arrays on the submicron scale are often complex and with practical time, cost, and method limitations. Herein we demonstrate the rapid fabrication of nanopillar arrays using the thermal dewetting of Pt films with thicknesses in the range from 5 to 19 nm followed by anisotropic reactive ion etching (RIE) of the substrate materials.

View Article and Find Full Text PDF

We present a lithography-free technological strategy that enables fabrication of large area substrates for surface-enhanced Raman spectroscopy (SERS) with excellent performance in the red to NIR spectral range. Our approach takes advantage of metal dewetting as a facile means to create stochastic arrays of circular patterns suitable for subsequent fabrication of plasmonic disc-on-pillar (DOP) structures using a combination of anisotropic reactive ion etching (RIE) and thin film deposition. Consistent with our previous studies of individual DOP structures, pillar height which, in turn, is defined by the RIE processing time, has a dramatic effect on the SERS performance of stochastic arrays of DOP structures.

View Article and Find Full Text PDF

Unlike HPLC, there has been sparse advancement in the stationary phases used for planar chromatography. Nevertheless, modernization of planar chromatography platforms can further highlight the technique's ability to separate multiple samples simultaneously, utilize orthogonal separation formats, image (detect) separations without rigorous temporal demands, and its overall simplicity. This paper describes the fabrication and evaluation of ordered pillar arrays that are chemically modified for planar chromatography and inspected by fluorescence microscopy to detect solvent development and analyte bands (spots).

View Article and Find Full Text PDF

Advances in nanofabrication have allowed the production of new and more reproducible substrates for the Raman detection of trace antimicrobials in water. The superior substrate uniformity combined with the ability to control surface morphology represents a significant step forward in the design of substrates with improved enhancement factors and trace-detection capabilities. The work presented herein successfully combines electron-beam lithography (EBL) and reactive ion-etching (RIE) protocols for the construction, testing, and validation of plasmonic hybrid morphology nanoarrays for the detection of arsenic antimicrobials in water.

View Article and Find Full Text PDF

The importance of fluorescent detection in many fields is well established. While advancements in instrumentation and the development of brighter fluorophore have increased sensitivity and lowered the detection limits of the method, additional gains can be made by manipulating the local electromagnetic field. Herein we take advantage of silicon nanopillars that exhibit optical resonances and field enhancement on their surfaces and demonstrate their potential in improving performance of biomolecular fluorescent assays.

View Article and Find Full Text PDF

A simple and rapid fluorescence sensing platform based on the MIL-53(Fe) MOF was developed for fast, highly selective and ultrasensitive direct determination of MeHg(+).

View Article and Find Full Text PDF

A method for hyphenating surface enhanced Raman scattering (SERS) and thin-layer chromatography (TLC) is presented that employs silver-polymer nanocomposites as an interface. Through the process of conformal blotting, analytes are transferred from TLC plates to nanocomposite films before being imaged via SERS. A procedure leading to maximum blotting efficiency was established by investigating various parameters such as time, pressure, and type and amount of blotting solvent.

View Article and Find Full Text PDF

Silicon nanowire and nanopillar structures have drawn increased attention in recent years due in part to their unique optical properties. Herein, electron beam lithography combined with reactive-ion etching is used to reproducibly create individual silicon nanopillars of various sizes, shapes, and heights. Finite difference time domain analysis predicts local field intensity enhancements in the vicinity of appropriately sized and coaxially illuminated silicon nanopillars of approximately 2 orders of magnitude.

View Article and Find Full Text PDF

Numerous studies have addressed the challenges of implementing miniaturized microfluidic platforms for chemical and biological separation applications. However, the integration of real time detection schemes capable of providing valuable sample information under continuous, ultra low volume flow regimes has not fully been addressed. In this report we present a chip based chromatography system comprising of a pillar array separation column followed by a reagent channel for passive mixing of a silver colloidal solution into the eluent stream to enable surface enhanced Raman spectroscopy (SERS) detection.

View Article and Find Full Text PDF

This communication describes a simple method that uses a thin film of octafluorocyclobutane (OFCB) polymer for efficient nanoscale transfer printing (nTP). Plasma polymerization of OFCB produces a Teflon-like fluoropolymer which strongly adheres and conformally covers a 3-D inorganic stamp. The inherently low surface energy of in situ deposited OFCB polymer on nanoscale silicon features is demonstrated as a unique nanocomposite stamp to fabricate various test structures with improved nTP feature resolution down to sub-100 nm.

View Article and Find Full Text PDF

Organoarsenic drugs such as roxarsone and 4-arsanilic acid are poultry feed additives widely used in US broilers to prevent coccidosis and to enhance growth and pigmentation. Despite their veterinary benefits there has been growing concern about their use because over 90% of these drugs are released intact into litter, which is often sold as a fertilizing supplement. The biochemical degradation of these antimicrobials in the litter matrix can release significant amounts of soluble As(III) and As(V) to the environment, representing a potential environmental risk.

View Article and Find Full Text PDF

A thermally stable, reusable surface-enhanced Raman scattering (SERS) substrate consisting of a gold/silver bi-layer film with a protective alumina coating is reported. The film is synthesized by thermally evaporating sequential layers of gold and silver followed by coating an ultra-thin alumina layer using atomic layer deposition. The use of gold as the foundational layer improves the thermal stability of the metal bi-layer film while providing the additional ability to tune the SERS response.

View Article and Find Full Text PDF

In this work, geometrical optimizations of Ag disc on pillar (DOP) hybrid plasmonic nanostructures were conducted and allowed us to achieve reproducible average enhancement factors of 1 × 10(9) and greater.

View Article and Find Full Text PDF