Heterogeneous multi-agent systems can be deployed to complete a variety of tasks, including some that are impossible using a single generic modality. This paper introduces an approach to solving the problem of cooperative behavior planning in small heterogeneous robot teams where members can both function independently as well as physically interact with each other in ways that give rise to additional functionality. This approach enables, for the first time, the cooperative completion of tasks that are infeasible when using any single modality from those agents comprising the team.
View Article and Find Full Text PDFThis paper shows how methods from statistical relational learning can be used to address problems in grammatical inference using model-theoretic representations of strings. These model-theoretic representations are the basis of representing formal languages logically. Conventional representations include a binary relation for order and unary relations describing mutually exclusive properties of each position in the string.
View Article and Find Full Text PDF