Publications by authors named "Michael Schwarzfischer"

Embryonic stem cells (ESCs) display heterogeneous expression of pluripotency factors such as Nanog when cultured with serum and leukemia inhibitory factor (LIF). In contrast, dual inhibition of the signaling kinases GSK3 and MEK (2i) converts ESC cultures into a state with more uniform and high Nanog expression. However, it is so far unclear whether 2i acts through an inductive or selective mechanism.

View Article and Find Full Text PDF

Motivation: Quantitative large-scale cell microscopy is widely used in biological and medical research. Such experiments produce huge amounts of image data and thus require automated analysis. However, automated detection of cell outlines (cell segmentation) is typically challenging due to, e.

View Article and Find Full Text PDF

Differentiation alters molecular properties of stem and progenitor cells, leading to changes in their shape and movement characteristics. We present a deep neural network that prospectively predicts lineage choice in differentiating primary hematopoietic progenitors using image patches from brightfield microscopy and cellular movement. Surprisingly, lineage choice can be detected up to three generations before conventional molecular markers are observable.

View Article and Find Full Text PDF

Many cellular effectors of pluripotency are dynamically regulated. In principle, regulatory mechanisms can be inferred from single-cell observations of effector activity across time. However, rigorous inference techniques suitable for noisy, incomplete, and heterogeneous data are lacking.

View Article and Find Full Text PDF

The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors.

View Article and Find Full Text PDF

Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics.

View Article and Find Full Text PDF

Populations of genetically identical Sinorhizobium fredii NGR234 cells differ significantly in their expression profiles of autoinducer (AI)-dependent and AI-independent genes. Promoter fusions of the NGR234 AI synthase genes traI and ngrI showed high levels of phenotypic heterogeneity during growth in TY medium on a single-cell level. However, adding very high concentrations of N-(3-oxooctanoyl-)-l-homoserine lactone resulted in a more homogeneous expression profile.

View Article and Find Full Text PDF

Background: In recent years, high-throughput microscopy has emerged as a powerful tool to analyze cellular dynamics in an unprecedentedly high resolved manner. The amount of data that is generated, for example in long-term time-lapse microscopy experiments, requires automated methods for processing and analysis. Available software frameworks are well suited for high-throughput processing of fluorescence images, but they often do not perform well on bright field image data that varies considerably between laboratories, setups, and even single experiments.

View Article and Find Full Text PDF

Hematopoiesis is often pictured as a hierarchy of branching decisions, giving rise to all mature blood cell types from stepwise differentiation of a single cell, the hematopoietic stem cell. Various aspects of this process have been modeled using various experimental and theoretical techniques on different scales. Here we integrate the more common population-based approach with a single-cell resolved molecular differentiation model to study the possibility of inferring mechanistic knowledge of the differentiation process.

View Article and Find Full Text PDF

Sox17 is a HMG-box transcription factor that has been shown to play important roles in both cardio-vascular development and endoderm formation. To analyze these processes in greater detail, we have generated a Sox17-mCherry fusion (SCF) protein by gene targeting in ES cells. SCF reporter mice are homozygous viable and faithfully reflect the endogenous Sox17 protein localization.

View Article and Find Full Text PDF