Metal oxide nanoparticles exhibit outstanding catalytic properties, believed to be related to the presence of oxygen vacancies at the particle's surface. However, little quantitative information is known about concentrations of point defects inside and at surfaces of these nanoparticles, due to the challenges in achieving an atomically resolved experimental access. By employing off-axis electron holography, we demonstrate, using MgO nanoparticles as an example, a methodology that discriminates between mobile charge induced by electron beam irradiation and immobile charge associated with deep traps induced by point defects as well as distinguishes between bulk and surface point defects.
View Article and Find Full Text PDFWe report a magnetic transition region in La_{0.7}Sr_{0.3}MnO_{3} with gradually changing magnitude of magnetization, but no rotation, stable at all temperatures below T_{C}.
View Article and Find Full Text PDFHigh-temperature superconductive (SC) cuprates exhibit not only a SC phase, but also competing orders, suppressing superconductivity. Charge order (CO) has been recognized as an important competing order, but its microscopic spatial interplay with SC phase as well as the interlayer coupling in CO and SC phases remain elusive, despite being essential for understanding the physical mechanisms of competing orders and hence superconductivity. Here we report the achievement of direct real-space imaging with atomic-scale resolution of cryogenically cleaved YBaCuO using cross-sectional scanning tunneling microscopy/spectroscopy.
View Article and Find Full Text PDFPhotodriven dipole reordering of the intercalated organic molecules in halide perovskites has been suggested to be a critical degree of freedom, potentially affecting physical properties, device performance, and stability of hybrid perovskite-based optoelectronic devices. However, thus far a direct atomically resolved dipole mapping under device operation condition, that is, illumination, is lacking. Here, we map simultaneously the molecule dipole orientation pattern and the electrostatic potential with atomic resolution using photoexcited cross-sectional scanning tunneling microscopy and spectroscopy.
View Article and Find Full Text PDF