Simulations of large-scale brain dynamics are often impacted by overexcitation resulting from heavy-tailed structural network distributions, leading to biologically implausible simulation results. We implement a homeodynamic plasticity mechanism, known from other modeling work, in the widely used Jansen-Rit neural mass model for The Virtual Brain (TVB) simulation framework. We aim at heterogeneously adjusting the inhibitory coupling weights to reach desired dynamic regimes in each brain region.
View Article and Find Full Text PDFThe brain consists of a vastly interconnected network of regions, the connectome. By estimating the statistical interdependence of neurophysiological time series, we can measure the functional connectivity (FC) of this connectome. Pearson's correlation ( ) is a common metric of coupling in FC studies.
View Article and Find Full Text PDFTraveling waves and neural oscillation frequency gradients are pervasive in the human cortex. While the direction of traveling waves has been linked to brain function and dysfunction, the factors that determine this direction remain elusive. We hypothesized that structural connectivity instrength gradients - defined as the gradually varying sum of incoming connection strengths across the cortex - could shape both traveling wave direction and frequency gradients.
View Article and Find Full Text PDFInflammatory skin diseases, such as psoriasis, atopic dermatitis, and alopecia areata, occur when the regulatory tolerance of the innate immune system is disrupted, resulting in the activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) inflammatory signaling pathway by interleukin 6 (IL-6) and other key inflammatory cytokines. JAK inhibitors, such as tofacitinib, bind to these enzymes which are coupled to receptors on cell surfaces and block the transcription of inflammatory cytokine-induced genes. The first topical applications are being marketed, yet insufficient effects regarding indications, such as alopecia areata, suggest that improved delivery technologies could help increase the efficacy.
View Article and Find Full Text PDFIntroduction: Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to unveil in living subjects. The Virtual Brain (TVB) modeling, by exploiting structural and functional magnetic resonance imaging (MRI), yields mesoscopic parameters of connectivity and synaptic transmission.
Methods: We used TVB to simulate brain networks, which are key for human brain function, in Alzheimer's disease (AD) and frontotemporal dementia (FTD) patients, whose connectivity and synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal novel pathological hallmarks.
To better understand how network structure shapes intelligent behavior, we developed a learning algorithm that we used to build personalized brain network models for 650 Human Connectome Project participants. We found that participants with higher intelligence scores took more time to solve difficult problems, and that slower solvers had higher average functional connectivity. With simulations we identified a mechanistic link between functional connectivity, intelligence, processing speed and brain synchrony for trading accuracy with speed in dependence of excitation-inhibition balance.
View Article and Find Full Text PDFInsufficient stability of micellar drug delivery systems is still the major limitation to their systematic application in chemotherapy. This work demonstrates novel π-electron stabilized polyelectrolyte block copolymer micelles based on dendritic polyglycerolsulfate-cystamine--poly(4-benzoyl-1,4-oxazepan-7-one)-pyrene (dPGS-SS-POxPPh-Py) presenting a very low critical micelle concentration (CMC) of 0.3 mg L (18 nM), 55-fold lower than that of conventional amphiphilic block copolymer micelles.
View Article and Find Full Text PDFWe present a dataset of magnetic resonance imaging (MRI) data (T1, diffusion, BOLD) acquired in 25 brain tumor patients before the tumor resection surgery, and six months after the surgery, together with the tumor masks, and in 11 controls (recruited among the patients' caregivers). The dataset also contains behavioral and emotional scores obtained with standardized questionnaires. To simulate personalized computational models of the brain, we also provide structural connectivity matrices, necessary to perform whole-brain modelling with tools such as The Virtual Brain.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2022
Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues.
View Article and Find Full Text PDFInflammation plays an important role in the response to danger signals arising from damage to our body and in restoring homeostasis. Dysregulated inflammatory responses occur in many diseases, including cancer, sepsis and autoimmunity. The efficacy of anti-inflammatory drugs, developed for the treatment of dysregulated inflammation, can be potentiated using biomaterials, by improving the bioavailability of drugs and by reducing side effects.
View Article and Find Full Text PDFThe Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS (ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic conversion of user-specified model equations into fast simulation code; simulation-ready brain models of patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse brain simulation; and extensive educational material.
View Article and Find Full Text PDFFollowing traumatic brain injury (TBI), cognitive impairments manifest through interactions between microscopic and macroscopic changes. On the microscale, a neurometabolic cascade alters neurotransmission, while on the macroscale diffuse axonal injury impacts the integrity of long-range connections. Large-scale brain network modeling allows us to make predictions across these spatial scales by integrating neuroimaging data with biophysically based models to investigate how microscale changes invisible to conventional neuroimaging influence large-scale brain dynamics.
View Article and Find Full Text PDFWhat dynamic processes underly functional brain networks? Functional connectivity (FC) and functional connectivity dynamics (FCD) are used to represent the patterns and dynamics of functional brain networks. FC(D) is related to the synchrony of brain activity: when brain areas oscillate in a coordinated manner this yields a high correlation between their signal time series. To explain the processes underlying FC(D) we review how synchronized oscillations emerge from coupled neural populations in brain network models (BNMs).
View Article and Find Full Text PDFIn this paper, we present well-defined dPGS-SS-PCL/PLGA/PLA micellar systems demonstrating excellent capabilities as a drug delivery platform in light of high stability and precise and drug release combined with active targetability to tumors. These six amphiphilic block copolymers were each targeted in two different molecular weights (8 or 16 kDa) and characterized using H NMR, gel permeation chromatography (GPC), and elemental analysis. The block copolymer micelles showed monodispersed size distributions of 81-187 nm, strong negative charges between -52 and -41 mV, and low critical micelle concentrations (CMCs) of up to 1.
View Article and Find Full Text PDFTargeted delivery and extended blood circulation of anticancer drugs have been the challenges for decreasing the adverse side effects and improving the therapeutic efficiency in cancer chemotherapy. Herein, we present a drug delivery system (DDS) based on biodegradable dendritic polyglycerol sulfate-bearing poly(caprolactone) (dPGS-PCL) chains, which has been synthesized on 20 g scale using a straightforward two-step protocol. fluorescence imaging demonstrated a significant accumulation of the DDS in the tumor environment.
View Article and Find Full Text PDFExenatide is a small therapeutic peptide being currently used in clinic for the treatment of diabetes mellitus type II, however, displaying a short blood circulation time which makes two daily injections necessary. Covalent polymer modification of a protein is a well-known approach to overcome this limitation, resulting in steric shielding, an increased size and therefore a longer circulation half-life. In this study, we employed site-selective C-terminal polymer ligation of exenatide via copper-catalyzed azide-alkyne-cycloaddition (CuAAC) to yield 1:1-conjugates of either poly(ethylene glycol) (PEG) or linear polyglycerol (LPG) of different molecular weights.
View Article and Find Full Text PDFSince several decades, PEGylation is known to be the clinical standard to enhance pharmacokinetics of biotherapeutics. In this study, we introduce polyglycerol (PG) of different lengths and architectures (linear and hyperbranched) as an alternative polymer platform to poly(ethylene glycol) (PEG) for half-life extension (HLE). We designed site-selective N-terminally modified PG-protein conjugates of the therapeutic protein anakinra (IL-1ra, Kineret) and compared them systematically with PEG analogues of similar molecular weights.
View Article and Find Full Text PDFNeuregulin-1 (NRG1) represents an important factor for multiple processes including neurodevelopment, brain functioning or cognitive functions. Evidence from animal research suggests an effect of NRG1 on the excitation-inhibition (E/I) balance in cortical circuits. However, direct evidence for the importance of NRG1 in E/I balance in humans is still lacking.
View Article and Find Full Text PDFBrain tumor patients scheduled for tumor resection often face significant uncertainty, as the outcome of neurosurgery is difficult to predict at the individual patient level. Recently, simulation of the activity of neural populations connected according to the white matter fibers, producing personalized brain network models, has been introduced as a promising tool for this purpose. The Virtual Brain provides a robust open source framework to implement these models.
View Article and Find Full Text PDFModels of large-scale brain networks that are informed by the underlying anatomical connectivity contribute to our understanding of the mapping between the structure of the brain and its dynamical function. Connectome-based modelling is a promising approach to a more comprehensive understanding of brain function across spatial and temporal scales, but it must be constrained by multi-scale empirical data from animal models. Here we describe the construction of a macaque (Macaca mulatta and Macaca fascicularis) connectome for whole-cortex simulations in TheVirtualBrain, an open-source simulation platform.
View Article and Find Full Text PDFPresurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention.
View Article and Find Full Text PDFThe neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity.
View Article and Find Full Text PDFRecent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models.
View Article and Find Full Text PDF