Publications by authors named "Michael Scherman"

Article Synopsis
  • Scientists created new medicines called spectinamides to help treat tuberculosis (TB) more effectively.
  • One of these, named MBX-4888A, works well with other TB drugs like rifampin and pyrazinamide in mice.
  • The research showed that using MBX-4888A can help shorten the treatment time for TB and seems to be safe for long-term use in mice.
View Article and Find Full Text PDF
Article Synopsis
  • Spectinamides are new medicines that help fight TB (tuberculosis), modified to work better in the body.
  • In studies with mice, one type called MBX-4888A showed it could improve treatment when used with other TB drugs.
  • This research tested how well it works in different mouse models, showing it's safe and might help cure TB faster.
View Article and Find Full Text PDF

The rise in interest in two-dimensional (2D) nanomaterials has been notable in recent years. In particular, hexagonal boron nitride (h-BN), recognized as an optimal substrate for enhancing graphene properties, holds promise for electronic applications. However, the widely employed spontaneous Raman microscopy, a gold standard for graphene study, faces strong limitations in h-BN due to its large bandgap and low cross section.

View Article and Find Full Text PDF

We present a multi-focus fs/ps-CARS scheme to perform spectroscopy on multiple points simultaneously for gas phase measurements and microscopy, using a single birefringence crystal or a combination of birefringent stacks. CARS performances are first reported for 1 kHz single-shot N spectroscopy on two points set few millimeters apart, allowing thermometry measurements to be carried out in the vicinity of a flame. Then, simultaneous acquisition of toluene spectra is demonstrated on two points set 14 µm apart in a microscope setup.

View Article and Find Full Text PDF

Electropulsation has become a powerful technological platform for electromanipulation of cells and tissues for various medical and biotechnological applications, but the molecular changes that underlay the very first initiation step of this process have not been experimentally observed. Here, we endowed a wide-field Coherent anti-Stokes Raman Scattering platform with an ad-hoc electromagnetic exposure device and we demonstrated, using artificial lipid vesicles (i.e.

View Article and Find Full Text PDF

Despite decades of research, tuberculosis remains a leading cause of death from a single infectious agent. Spectinamides are a promising novel class of antituberculosis agents, and the lead spectinamide 1810 has demonstrated excellent efficacy, safety, and drug-like properties in numerous and assessments in mouse models of tuberculosis. In the current dose ranging and dose fractionation study, we used 29 different combinations of dose level and dosing frequency to characterize the exposure-response relationship for spectinamide 1810 in a mouse model of Mycobacterium tuberculosis infection and in healthy animals.

View Article and Find Full Text PDF

To help fight COVID-19, new molecular tools specifically targeting critical components of the causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The SARS-CoV-2 nucleocapsid protein is critical for viral replication, integral to viral particle assembly, and a major diagnostic marker for infection and immune protection. Currently the limited available antibody reagents targeting the nucleocapsid protein are not specific to SARS-CoV-2 nucleocapsid protein, and sequences for these antibodies are not publicly available.

View Article and Find Full Text PDF

Single shot hybrid fs/ps-CARS spectroscopy of N is demonstrated at repetition rate up to 5 kHz using an amplified probe delivering a constant energy per pulse between 1 and 5 kHz. We performed 5 kHz CARS thermometry in a laminar CH/air flame and in ambient air, with a precision under 0.5% at typical flame temperature, which is 2 times more precise and 5 times faster than previous state of the art with this technique.

View Article and Find Full Text PDF

The global COVID-19 pandemic has caused massive disruptions in every society around the world. To help fight COVID-19, new molecular tools specifically targeting critical components of the causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The SARS-CoV-2 nucleocapsid protein is a major component of the viral replication processes, integral to viral particle assembly, and is a major diagnostic marker for infection and immune protection.

View Article and Find Full Text PDF

A novel laser system for ro-vibrational spectroscopy using coherent anti-Stokes Raman Scattering in hybrid fs/ps regime is presented. A single Yb:KGW laser source is used as a master laser to generate the three CARS laser beams, namely the pump and Stokes femtosecond pulses and a 58 ps probe pulse. Master oscillator power amplifier (MOPA) architecture is implemented to increase the probe output power using a custom two stage free space linear amplifier.

View Article and Find Full Text PDF

AN12855 is a direct, cofactor-independent inhibitor of InhA in In the C3HeB/FeJ mouse model with caseous necrotic lung lesions, AN12855 proved efficacious with a significantly lower resistance frequency than isoniazid. AN12855 drug levels were better retained in necrotic lesions and caseum where the majority of hard to treat, extracellular bacilli reside. Owing to these combined attributes, AN12855 represents a promising alternative to the frontline antituberculosis agent isoniazid.

View Article and Find Full Text PDF

New antitubercular agents are needed to combat the spread of multidrug- and extensively drug-resistant strains of . The frontline antitubercular drug isoniazid (INH) targets the mycobacterial enoyl-ACP reductase, InhA. Resistance to INH is predominantly through mutations affecting the prodrug-activating enzyme KatG.

View Article and Find Full Text PDF

Spectinamides are a novel class of antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Their antitubercular activity is derived from both ribosomal affinity and their ability to overcome intrinsic efflux mediated by the Mycobacterium tuberculosis Rv1258c efflux pump. This study explores the structure-activity relationships through analysis of 50 targeted spectinamides.

View Article and Find Full Text PDF

Objectives: New drug regimens employing combinations of existing and experimental antimicrobial agents are needed to shorten treatment of tuberculosis (TB) in humans. The spectinamides are narrow-spectrum semisynthetic analogues of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead 1599, have been previously shown to exhibit a promising therapeutic profile in mice as single agents.

View Article and Find Full Text PDF

Pretomanid (PA-824) is an important nitroimidazole antitubercular agent in late stage clinical trials. However, pretomanid is limited by poor solubility and high protein binding, which presents opportunities for improvement in its physiochemical properties. Conversely, the oxazolidinone linezolid has excellent physicochemical properties and has recently shown impressive activity for the treatment of drug resistant tuberculosis.

View Article and Find Full Text PDF

Spectinamides are new semi-synthetic spectinomycin derivatives with potent anti-tubercular activity. The reported synergism of the precursor spectinomycin with other antibiotics prompted us to examine whether spectinamides sensitize M. tuberculosis to other antibiotics not traditionally used in the treatment of tuberculosis to potentially expand therapeutic options for MDR/XDR Tuberculosis.

View Article and Find Full Text PDF

Apramycin is a unique aminoglycoside with a dissociation of antibacterial activity and ototoxicity. We assessed the antibacterial efficacy of apramycin in two murine models of infection, Mycobacterium tuberculosis aerosol infection and Staphylococcus aureus septicemia. In both infection models, the efficacy of apramycin was comparable to that of amikacin.

View Article and Find Full Text PDF

New drugs and drugs with a novel mechanism of action are desperately needed to shorten the duration of tuberculosis treatment, to prevent the emergence of drug resistance, and to treat multiple-drug-resistant strains of Mycobacterium tuberculosis. Recently, there has been renewed interest in clofazimine (CFZ). In this study, we utilized the C3HeB/FeJ mouse model, possessing highly organized, hypoxic pulmonary granulomas with caseous necrosis, to evaluate CFZ monotherapy in comparison to results with BALB/c mice, which form only multifocal, coalescing cellular aggregates devoid of caseous necrosis.

View Article and Find Full Text PDF

The reductively activated nitroaromatic class of antimicrobials, which include nitroimidazole and the more metabolically labile nitrofuran antitubercular agents, have demonstrated some potential for development as therapeutics against dormant TB bacilli. In previous studies, the pharmacokinetic properties of nitrofuranyl isoxazolines were improved by incorporation of the outer ring elements of the antitubercular nitroimidazole OPC-67683. This successfully increased stability of the resulting pentacyclic nitrofuran lead compound Lee1106 (referred to herein as 9a).

View Article and Find Full Text PDF

Although the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, we generated a new semisynthetic series of spectinomycin analogs with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival.

View Article and Find Full Text PDF

Out of the prominent global ailments, tuberculosis (TB) is still one of the leading causes of death worldwide due to infectious disease. Development of new drugs that shorten the current tuberculosis treatment time and have activity against drug resistant strains is of utmost importance. Towards these goals we have focused our efforts on developing novel anti-TB compounds with the general structure of 1-adamantyl-3-phenyl urea.

View Article and Find Full Text PDF

Since the peptidoglycan isolated from Mycobacterium spp. is refractory to commercially available murolytic enzymes, possibly due to the presence of various modifications found on this peptidoglycan, the utility of a mycobacteriophage-derived murolytic enzyme was assessed for an analysis of peptidoglycan from mycobacteria. We cloned, expressed, and purified the lysA gene product, a protein with homology to known peptidoglycan-degrading amidases, from bacteriophage Ms6.

View Article and Find Full Text PDF

Glucose-1-phosphate thymidylyltransferase (RmlA) catalyzes the condensation of glucose-1-phosphate (G1P) with deoxy-thymidine triphosphate (dTTP) to yield dTDP-d-glucose and pyrophosphate. This is the first step in the l-rhamnose biosynthetic pathway. l-Rhamnose is an important component of the cell wall of many microorganisms, including Mycobacterium tuberculosis and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

A series of tetracyclic nitrofuran isoxazoline anti-tuberculosis agents was designed and synthesized to improve the pharmacokinetic properties of an initial lead compound, which had potent anti-tuberculosis activity but suffered from poor solubility, high protein binding and rapid metabolism. In this study, structural modifications were carried on the outer phenyl and piperidine rings to introduce solubilizing and metabolically blocking functional groups. The compounds generated were evaluated for their in vitro antitubercular activity, bacterial spectrum of activity, solubility, permeability, microsomal stability and protein binding.

View Article and Find Full Text PDF

Adamantyl ureas were previously identified as a group of compounds active against Mycobacterium tuberculosis in culture with minimum inhibitor concentrations (MICs) below 0.1 μg/ml. These compounds have been shown to target MmpL3, a protein involved in secretion of trehalose mono-mycolate.

View Article and Find Full Text PDF