J Cardiovasc Magn Reson
July 2013
Background: Myocardial T1-mapping methods such as MOLLI use SSFP readout and are prone to frequency-dependent error in T1-measurement. A significant error in T1 may result at relatively small off-resonance frequencies that are well within the region without banding artifacts.
Methods: The sensitivity of T1-estimates based on the SSFP based MOLLI sequence to errors in center frequency are calculated by means of a Bloch simulation and validated by phantom measurements.
Purpose: To evaluate the error in T1 estimates using inversion-recovery-based T1 mapping due to imperfect inversion and to perform a systematic study of adiabatic inversion pulse designs in order to maximize inversion efficiency for values of transverse relaxation (T2) in the myocardium subject to a peak power constraint.
Methods: The inversion factor for hyperbolic secant and tangent/hyperbolic tangent adiabatic full passage waveforms was calculated using Bloch equations. A brute-force search was conducted for design parameters: pulse duration, frequency range, shape parameters, and peak amplitude.
This work presents a new open source framework for medical image reconstruction called the "Gadgetron." The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or "Gadgets" from raw data to reconstructed images. The data processing pipeline is configured dynamically at run-time based on an extensible markup language configuration description.
View Article and Find Full Text PDFA barrier to the adoption of non-Cartesian parallel magnetic resonance imaging for real-time applications has been the times required for the image reconstructions. These times have exceeded the underlying acquisition time thus preventing real-time display of the acquired images. We present a reconstruction algorithm for commodity graphics hardware (GPUs) to enable real time reconstruction of sensitivity encoded radial imaging (radial SENSE).
View Article and Find Full Text PDFA novel spectroscopic imaging method with high spectral and spatial resolution was developed for the specific goal of assessing muscle fat. Sensitivity to the methylene and methyl protons of fatty acids was improved by the use of a binomial 1 1 excitation pulse instead of the standard radiofrequency (RF) pulse. Acceptable measurement time is achieved by using a narrow spectral bandwidth (6 ppm).
View Article and Find Full Text PDFMed Inform Internet Med
December 2002
Static web pages may be easy to setup using text processors or user-friendly web editing software. However, some basic knowledge of the implementation (HTML) is usually needed for final editing and maintenance. As a result many static web pages are left without appropriate updating.
View Article and Find Full Text PDF