Publications by authors named "Michael Scarpati"

This study reports on a putative eicosanoid biosynthesis pathway in Drosophila melanogaster and challenges the currently held view that mechanistic routes to synthesize eicosanoid or eicosanoid-like biolipids do not exist in insects, since to date, putative fly homologs of most mammalian enzymes have not been identified. Here we use systematic and comprehensive bioinformatics approaches to identify most of the mammalian eicosanoid synthesis enzymes. Sensitive sequence analysis techniques identified candidate Drosophila enzymes that share low global sequence identities with their human counterparts.

View Article and Find Full Text PDF

The evolutionary success of parasitoid wasps, a highly diverse group of insects widely used in biocontrol, depends on a variety of life history strategies in conflict with those of their hosts [1]. Drosophila melanogaster is a natural host of parasitic wasps of the genus Leptopilina. Attack by L.

View Article and Find Full Text PDF

Proteomic analyses have become an essential part of the toolkit of the molecular biologist, given the widespread availability of genomic data and open source or freely accessible bioinformatics software. Tools are available for detecting homologous sequences, recognizing functional domains, and modeling the three-dimensional structure for any given protein sequence. Although a wealth of structural and functional information is available for a large number of cytoskeletal proteins, with representatives spanning all of the major subfamilies, the majority of cytoskeletal proteins remain partially or totally uncharacterized.

View Article and Find Full Text PDF