Publications by authors named "Michael Scalora"

Space-time modulation of electromagnetic parameters offers novel exciting possibilities for advanced field manipulations. In this study, we explore wave scattering from a time-varying interface characterized by a Lorentz-type dispersion with a steplike temporal variation in its parameters. Our findings reveal a new process: an unconventional frequency generation at the natural resonances of the system.

View Article and Find Full Text PDF

Tunable generation of vortex beams holds relevance in various fields, including communications and sensing. In this paper, we demonstrate the feasibility of nonlinear spin-orbit interactions in thin films of materials with second-order nonlinear susceptibility. Remarkably, the nonlinear tensor can mix the longitudinal and transverse components of the pump field.

View Article and Find Full Text PDF

We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances.

View Article and Find Full Text PDF

Phase change materials are suitable for tunable photonic devices where the optical response can be altered under external stimuli, such as heat, an electrical or an optical signal. In this scenario, we performed numerical simulations to study the optical properties of a flat unpatterned resonant structure and a grating, both coated with a thin film of vanadium dioxide (VO). Our results suggest that it is possible to modulate broadband and narrowband reflectance spectra of the resonant structures in the visible to near-infrared range by more than 40 % when the VO undergoes an insulator-to-metal phase transition.

View Article and Find Full Text PDF

Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an AsS-based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal.

View Article and Find Full Text PDF

Electrolytically tunable graphene "building blocks" for reconfigurable and optically transparent microwave surfaces and absorbers have been designed and fabricated by exploiting Deep Eutectic Solvents (DESs). DESs have been first explored as electrolytic and environmentally friendly media for tuning sheet resistance and Fermi level of graphene together with its microwave response (reflection, transmission and absorption). We consider the tunability of the reconfigurable surfaces in terms of transmittance, absorption and reflectance, respectively, over the X and Ku bands when the gate voltage is varied in the -1.

View Article and Find Full Text PDF

Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of epsilon-near-zero nanofilms made of low-loss doped cadmium-oxide. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths.

View Article and Find Full Text PDF

Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.

View Article and Find Full Text PDF

We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process.

View Article and Find Full Text PDF

In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

View Article and Find Full Text PDF

We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.

View Article and Find Full Text PDF

We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores second-harmonic generation in very thin semiconductor and dielectric waveguides that are smaller than the wavelength of light.
  • The authors describe a unique guiding mechanism that prevents light from spreading out (diffraction) and avoids certain limits that usually restrict light flow.
  • The research highlights how light trapping occurs when there’s a mismatch between the velocities of the fundamental wave and the second harmonic wave being generated.
View Article and Find Full Text PDF

We demonstrate controllable light deflection in thick metal gratings with periodic subwavelength slits filled with an active material. Under specific illumination conditions, the grating becomes nearly transparent and acts as a uniform optical phased-array antenna where the phase of the radiating elements is controlled by modifying the index of refraction of the material that fills each slit. The beam-steering operational regime occurs in a wide wavelength band, and it is relatively insensitive to the input angle.

View Article and Find Full Text PDF

We theoretically describe a way to enhance harmonic generation from subwavelength slits milled on semiconductor substrates in strongly absorptive regimes. The metal-like response typical of semiconductors, like GaAs and GaP, triggers enhanced transmission and nonlinear optical phenomena in the deep UV range. We numerically study correlations between linear and nonlinear responses and their intricacies in infinite arrays, and highlight differences between nonlinear surface and magnetic sources, and intrinsic χ((2)) and χ((3)) contributions to harmonic generation.

View Article and Find Full Text PDF

In this paper we discuss the possibility of implementing a novel bio-sensing platform based on the observation of the shift of the leaky surface plasmon mode that occurs at the edge of the plasmonic band gap of metal gratings, when an analyte is deposited on top of the metallic structure. We report numerical calculations, fabrication and experimental measurements to prove the sensing capability of a two-dimensional array of gold nano-patches in the detection of a small quantity of Isopropyl Alcohol (IPA) deposited on top of sensor surface. The calculated sensitivity of our device approaches a value of 1000 nm/RIU with a corresponding Figure of Merit (FOM) of 222 RIU(-1).

View Article and Find Full Text PDF

Spatial and temporal locking of fundamental and second harmonic pulses was realized by means of photorefractive nonlinearity and highly mismatched harmonic generation. Due to the presence of both phase-locked and unlocked second harmonic pulses, a twin simultonic state was observed. Simultonic filamentation occurring at high pumping rates allowed us to determine a relation between the simulton's waist and its intensity.

View Article and Find Full Text PDF

Surface spontaneous parametric down-conversion is predicted as a consequence of continuity requirements for electric- and magnetic-field amplitudes at a discontinuity of chi;{(2)} nonlinearity. A generalization of the usual two-photon spectral amplitude is suggested to describe this effect. Examples of nonlinear layered structures and periodically poled nonlinear crystals show that surface contributions to spontaneous down-conversion can be important.

View Article and Find Full Text PDF

We investigate the resolution and absorption losses of a Ag/GaP multilayer superlens. For a fixed source to image distance the resolution is independent of the position of the lens but the losses depend strongly on the lens placement. The absorption losses associated with the evanescent waves can be significantly larger than losses associated with the propagating waves especially when the superlens is close to the source.

View Article and Find Full Text PDF

We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.

View Article and Find Full Text PDF

We predict the existence of gap solitons in a nonlinear, quadratic Fabry-Pérot negative index cavity. A peculiarity of a single negative index layer is that if magnetic and electric plasma frequencies are different it forms a photonic band structure similar to that of a multilayer stack composed of ordinary, positive index materials. This similarity also results in comparable field localization and enhancement properties that under appropriate conditions may be used to either dynamically shift the band edge, or for efficient energy conversion.

View Article and Find Full Text PDF

We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying physical mechanisms for sub-wavelength focusing are resonance tunneling, field localization, and propagation effects. These structures offer several advantages: tunability and high transmittance (50% or better) across the visible and near IR ranges; large object-image distances, with image planes located beyond the range where the evanescent waves have decayed.

View Article and Find Full Text PDF

We study second-harmonic generation in a negative-index material cavity. The transmission spectrum shows a bandgap between the electric and magnetic plasma frequencies. The nonlinear process is made efficient by local phase-matching conditions between a forward-propagating pump and a backward-propagating second-harmonic signal.

View Article and Find Full Text PDF

We study second harmonic generation in a metallodielectric photonic-band-gap structure made of alternating layers of silver and a generic, dispersive, linear, dielectric material. We find that under ideal conditions the conversion efficiency can be more than two orders of magnitude greater than the maximum conversion efficiency achievable in a single layer of silver. We interpret this enhancement in terms of the simultaneous availability of phase matching conditions over the structure and good field penetration into the metal layers.

View Article and Find Full Text PDF

In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular.

View Article and Find Full Text PDF