Phys Imaging Radiat Oncol
October 2024
Background: Accurate diagnostic imaging is crucial for managing facial fractures, which are a common global occurrence. This study aimed to compare the image quality of Photon Counting Detector CT (PCD-CT) with state-of-the-art Energy Integrating Detector CT (EID-CT) and intraoperative C-arm CBCT (CBCT) in visualizing maxillofacial anatomy using a cadaveric sheep head model.
Methods: Three fresh sheep heads were used, with surgical interventions simulating metal implants in two of them.
Non-linear properties of iterative reconstruction (IR) algorithms can alter image texture. We evaluated the effect of a model-based IR algorithm (advanced modelled iterative reconstruction; ADMIRE) and dose on computed tomography thorax image quality. Dual-source scanner data were acquired at 20, 45 and 65 reference mAs in 20 patients.
View Article and Find Full Text PDFBackground: As guidelines endorse the use of computed tomography (CT) for examining coronary artery disease (CAD), it is important to compare the advantages and disadvantages of the novel photon counting detector CT (PCD-CT) technology with the established energy integrating detector CT (EID-CT).
Purpose: To compare the image quality of coronary computed tomography angiography (CCTA) and the Agatston scores (AS) derived from EID-CT and PCD-CT.
Material And Methods: In this prospective observational study, 28 patients underwent clinical calcium score and CCTA scans on an EID-CT and a PCD-CT scanner.
Objectives: Images reconstructed with higher strengths of iterative reconstruction algorithms may impair radiologists' subjective perception and diagnostic performance due to changes in the amplitude of different spatial frequencies of noise. The aim of the present study was to ascertain if radiologists can learn to adapt to the unusual appearance of images produced by higher strengths of Advanced modeled iterative reconstruction algorithm (ADMIRE).
Methods: Two previously published studies evaluated the performance of ADMIRE in non-contrast and contrast-enhanced abdominal CT.
Purpose: The aim was to evaluate a postprocessing optimization algorithm's ability to improve the spatial properties of a clinical treatment plan while preserving the target coverage and the dose to the organs at risk. The goal was to obtain a more homogenous treatment plan, minimizing the need for manual adjustments after inverse treatment planning.
Materials And Methods: The study included 25 previously treated prostate cancer patients.
Background: Bone strength is related to both mineral density (BMD) and the bone microstructure. However, only the assessment of BMD is available in clinical routine care today.
Purpose: To analyze and study the correlation of trabecular bone microstructure from the imaging data of a prototype Multitom Rax system, using micro-computed tomography (CT) data as the reference method (Skyscan 1176).
Vascular x-ray guided interventions are complex and may result in high occupational doses to ionising radiation if staff do not take appropriate actions to minimise their exposure. In this prospective intervention study, ten staff members wore an extra personal dosimeter on the upper body above their regular protective clothing during four consecutive periods. Between each period either additional practical radiological protection training was given or a real-time direct display dosimeter were provided to the staff.
View Article and Find Full Text PDFX-ray-guided interventions have increased in number and complexity. Mandatory radiological protection training includes both theoretical and practical training sessions. A recent additional training tool is real-time display dosemeters that give direct feedback to staff on their individual dose rates.
View Article and Find Full Text PDFDual-energy computed tomography (CT) can be used in radiotherapy treatment planning for the calculation of absorbed dose distributions. The aim of this work is to evaluate whether there is room for improvement in the accuracy of the Monoenergetic Plus algorithm by Siemens Healthineers. A Siemens SOMATOM Force scanner was used to scan a cylindrical polymethyl methacrylate phantom with four rod-inserts made of different materials.
View Article and Find Full Text PDFThe choice of the material base to which the material decomposition is performed in dual-energy computed tomography may affect the quality of reconstructed images. The aim of this work is to investigate how the commonly used bases (water, bone), (water, iodine) and (photoelectric effect, Compton scattering) affect the reconstructed linear attenuation coefficient in the case of the Alvarez-Macovski method. The performance of this method is also compared with the performance of the Dual-energy Iterative Reconstruction Algorithm (DIRA).
View Article and Find Full Text PDFAutomatic segmentation of bones in computed tomography (CT) images is used for instance in beam hardening correction algorithms where it improves the accuracy of resulting CT numbers. Of special interest are pelvic bones, which-because of their strong attenuation-affect the accuracy of brachytherapy in this region. This work evaluated the performance of the JJ2016 algorithm with the performance of MK2014v2 and JS2018 algorithms; all these algorithms were developed by authors.
View Article and Find Full Text PDFPurpose: High dose-rate prostate brachytherapy has been implemented in Sweden in the late 1980s and early 1990s in six clinics using the same schedule: 20 Gy in two fractions combined with 50 Gy in 25 fractions with external beam radiation therapy. Thirty years have passed and during these years, various aspects of the treatment process have developed, such as ultrasound-guided imaging and treatment planning system. An audit was conducted, including a questionnaire and treatment planning, which aimed to gather knowledge about treatment planning methods in Swedish clinics.
View Article and Find Full Text PDFSkin injuries may occur when radiation doses to the skin exceed 2 Gy. This study aimed to measure changes in skin microcirculation in patients undergoing chronic total occlusion percutaneous coronary interventions (CTO-PCI). In 14 patients, peak skin dose (PSD) was estimated with radiographic films and skin microcirculation was assessed with laser speckle contrast imaging (LSCI), before, 1 day after the intervention, and 4-6 weeks later.
View Article and Find Full Text PDFVisibility of low-contrast details in fluoroscopy and interventional radiology is important. Assessing detail visibility with human observers typically suffers from large observer variances. Objective, quantitative measurement of low-contrast detail visibility using a model observer, such as the square of the signal-to-noise ratio rate (SNR2rate), was implemented in MATLAB™ and evaluated.
View Article and Find Full Text PDFExisting methods for checking the light field-radiation field congruence on x-ray equipment either do not fully meet the conditions of various quality control standards regarding inherent uncertainty requirements or contain subjective steps, further increasing the uncertainty of the end result. The aim of this work was to develop a method to check the light field-radiation field congruence on all x-ray equipment. The result should have a low uncertainty which is accomplished by eliminating most subjective user steps in the method.
View Article and Find Full Text PDFDeep learning algorithms have improved the speed and quality of segmentation for certain tasks in medical imaging. The aim of this work is to design and evaluate an algorithm capable of segmenting bones in dual-energy CT data sets. A convolutional neural network based on the 3D U-Net architecture was implemented and evaluated using high tube voltage images, mixed images and dual-energy images from 30 patients.
View Article and Find Full Text PDFPurpose: To determine the effect of tube load, model-based iterative reconstruction (MBIR) strength and slice thickness in abdominal CT using visual comparison of multi-planar reconstruction images.
Method: Five image criteria were assessed independently by four radiologists on two data sets at 42- and 98-mAs tube loads for 25 patients examined on a 192-slice dual-source CT scanner. Effect of tube load, MBIR strength, slice thickness and potential dose reduction was estimated with Visual Grading Regression (VGR).
Background: Our aim was to compare CT images from native, nephrographic and excretory phases using image quality criteria as well as the detection of positive pathological findings in CT Urography, to explore if the radiation burden to the younger group of patients or patients with negative outcomes can be reduced.
Methods: This is a retrospective study of 40 patients who underwent a CT Urography examination on a 192-slice dual source scanner. Image quality was assessed for four specific renal image criteria from the European guidelines, together with pathological assessment in three categories: renal, other abdominal, and incidental findings without clinical significance.
Purpose: To estimate potential dose reduction in abdominal CT by visually comparing images reconstructed with filtered back projection (FBP) and strengths of 3 and 5 of a specific MBIR.
Material And Methods: A dual-source scanner was used to obtain three data sets each for 50 recruited patients with 30, 70 and 100% tube loads (mean CTDI 1.9, 3.
Purpose: To develop and evaluate-in a proof-of-concept configuration-a novel iterative reconstruction algorithm (DIRA) for quantitative determination of elemental composition of patient tissues for application to brachytherapy with low energy (< 50 keV) photons and proton therapy.
Methods: DIRA was designed as a model-based iterative reconstruction algorithm, which uses filtered backprojection, automatic segmentation and multimaterial tissue decomposition. The evaluation was done for a phantom derived from the voxelized ICRP 110 male phantom.
J Am Heart Assoc
May 2016
Background: The adoption of the transradial (TR) approach over the traditional transfemoral (TF) approach has been hampered by concerns of increased radiation exposure-a subject of considerable debate within the field. We performed a patient-level, multi-center analysis to definitively address the impact of TR access on radiation exposure.
Methods And Results: Overall, 10 centers were included from 6 countries-Canada (2 centers), United Kingdom (2), Germany (2), Sweden (2), Hungary (1), and The Netherlands (1).
Radiat Prot Dosimetry
June 2016
Automatic exposure control (AEC) in computed tomography (CT) facilitates optimisation of dose absorbed by the patient. The use of AEC requires appropriate 'patient centring' within the gantry, since positioning the patient off-centre may affect both image quality and absorbed dose. The aim of this experimental study was to measure the variation in organ and abdominal surface dose during CT examinations of the head, neck/thorax and abdomen.
View Article and Find Full Text PDFRadiat Prot Dosimetry
June 2016
The aim of this work was to assess whether an audit of clinical image quality could be efficiently implemented within a limited time frame using visual grading characteristics (VGC) analysis. Lumbar spine radiography, bedside chest radiography and abdominal CT were selected. For each examination, images were acquired or reconstructed in two ways.
View Article and Find Full Text PDFBackground: Heterogeneous ventilation in lungs of individuals with allergies, cigarette smokers, asthmatics and chronic obstructive pulmonary disease (COPD) patients has been demonstrated using imaging modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT). These individuals suffer from narrow and/or closed airways to various extents. By calculating regional heterogeneity in lung ventilation SPECT images as the coefficient of variation (CV) in small elements of the lung, heterogeneity maps and CV-density curves can be generated and used to quantitatively measure heterogeneity.
View Article and Find Full Text PDF