Publications by authors named "Michael S Osmanski"

How humans and animals segregate sensory information into discrete, behaviorally meaningful categories is one of the hallmark questions in neuroscience. Much of the research around this topic in the auditory system has centered around human speech perception, in which categorical processes result in an enhanced sensitivity for acoustically meaningful differences and a reduced sensitivity for nonmeaningful distinctions. Much less is known about whether nonhuman primates process their species-specific vocalizations in a similar manner.

View Article and Find Full Text PDF

Budgerigars (Melopsittacus undulatus) are small Australian parrots with a well-documented, learned vocal repertoire and a high degree of vocal production learning. These birds live in large, social flocks and they vocally interact with each other in a dynamic, reciprocal manner. We assume that budgerigars must process and integrate a wide variety of sensory stimuli when selecting appropriate vocal responses to conspecifics during vocal interactions, but the relative contributions of these different stimuli to that process are next to impossible to tease apart in a natural context.

View Article and Find Full Text PDF

The common marmoset (Callithrix jacchus) is a highly vocal New World primate species that has emerged in recent years as a promising model system for studies of auditory and vocal processing. Our recent studies have examined perceptual mechanisms related to the pitch of harmonic complex tones in this species. However, no previous psychoacoustic work has measured marmosets' frequency discrimination abilities for pure tones across a broad frequency range.

View Article and Find Full Text PDF

The perception of the pitch of harmonic complex sounds is a crucial function of human audition, especially in music and speech processing. Whether the underlying mechanisms of pitch perception are unique to humans, however, is unknown. Based on estimates of frequency resolution at the level of the auditory periphery, psychoacoustic studies in humans have revealed several primary features of central pitch mechanisms.

View Article and Find Full Text PDF

The common marmoset (Callithrix jacchus), a highly vocal New World primate species, has emerged in recent years as a promising animal model for studying brain mechanisms underlying perception, vocal production, and cognition. The present study provides a quantitative acoustic analysis of a large number of vocalizations produced by marmosets in a social environment within a captive colony. Previous classifications of the marmoset vocal repertoire were mostly based on qualitative observations.

View Article and Find Full Text PDF

Neural responses in the auditory cortex have historically been measured from either anesthetized or awake but non-behaving animals. A growing body of work has begun to focus instead on recording from auditory cortex of animals actively engaged in behavior tasks. These studies have shown that auditory cortical responses are dependent upon the behavioral state of the animal.

View Article and Find Full Text PDF

Pitch is one of the most fundamental percepts in the auditory system and can be extracted using either spectral or temporal information in an acoustic signal. Although pitch perception has been extensively studied in human subjects, it is far less clear how nonhuman primates perceive pitch. We have addressed this question in a series of behavioral studies in which marmosets, a vocal nonhuman primate species, were trained to discriminate complex harmonic tones differing in either spectral (fundamental frequency [f0]) or temporal envelope (repetition rate) cues.

View Article and Find Full Text PDF

Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound.

View Article and Find Full Text PDF

The common marmoset (Callithrix jacchus) is a small New World primate that has increasingly been used as a non-human model in the fields of sensory, motor, and cognitive neuroscience. However, little knowledge exists regarding behavioral methods in this species. Developing an understanding of the neural basis of perception and cognition in an animal model requires measurement of both brain activity and behavior.

View Article and Find Full Text PDF

The budgerigar (Melopsittacus undulatus) has an extraordinarily complex, learned, vocal repertoire consisting of both the long rambling warble song of males and a number of short calls produced by both sexes. In warble, the most common elements (>30%) bear a strong resemblance to the highly frequency-modulated, learned contact calls that the birds produce as single utterances. However, aside from this apparent similarity, little else is known about the relationship between contact calls and warble call elements.

View Article and Find Full Text PDF

The common marmoset is a small, arboreal, New World primate that has emerged as a promising non-human model system in auditory neuroscience. A complete understanding of the neuroethology of auditory processing in marmosets will include behavioral work examining how sounds are perceived by these animals. However, there have been few studies of the marmoset's hearing and perceptual abilities and the audiogram of this species has not been measured using modern psychophysical methods.

View Article and Find Full Text PDF

Budgerigars learn their vocalizations by reference to auditory information and they retain the ability to learn new vocalizations throughout life. Auditory feedback of these vocalizations was manipulated in three experiments by training birds to produce vocalizations while wearing small earphones. Experiments 1 and 2 examined the effect of background noise level (Lombard effect) and the effect of manipulating feedback level from self-produced vocalizations (Fletcher effect), respectively.

View Article and Find Full Text PDF

Auditory gratings (also called auditory ripples) are a family of complex, broadband sounds with sinusoidally modulated logarithmic amplitudes and a drifting spectral envelope. These stimuli have been studied both physiologically in mammals and psychophysically in humans. Auditory gratings share spectro-temporal properties with many natural sounds, including species-specific vocalizations and the formant transitions of human speech.

View Article and Find Full Text PDF