Publications by authors named "Michael S F Wiedemann"

Objective: Induction of browning in white adipose tissue (WAT) increases energy expenditure and may be an attractive target for the treatment of obesity. Since activation of Fas (CD95) induces pathways known to blunt expression of uncoupling protein 1 (UCP1), we hypothesized that Fas expression in adipocytes inhibits WAT browning and thus contributes to the development of obesity.

Methods: Adipocyte-specific Fas knockout (Fas) and control littermate (Fas) mice were fed a regular chow diet or a high-fat diet (HFD) for 20 weeks.

View Article and Find Full Text PDF

Paralympic Alpine Skiing comprises three main categories, namely Standing, Visually Impaired and Sitting, to one of which athletes get classified depending on their individual impairment of ability. An existing sport profile of alpine skiing for able-bodied athletes facilitates the physical preparation process of Standing and Visually Impaired athletes. However, very little is known about performance determinants as well as content and structure of the physical preparation of athletes with congenital or acquired spinal cord injury competing in the Sitting class.

View Article and Find Full Text PDF

Reduced kidney mass and/or function may result in multiple metabolic derangements, including insulin resistance. However, underlying mechanisms are poorly understood. Herein, we aimed to determine the impact of reduced kidney mass on glucose metabolism in lean and obese mice.

View Article and Find Full Text PDF

Low-grade inflammation in adipose tissue and liver has been implicated in obesity-associated insulin resistance and type 2 diabetes. Yet, the contribution of inflammatory cells to the pathogenesis of skeletal muscle insulin resistance remains elusive. In a large cohort of obese human individuals, blood monocyte Fas (CD95) expression correlated with systemic and skeletal muscle insulin resistance.

View Article and Find Full Text PDF

High-fat feeding for 3-4 days impairs glucose tolerance and hepatic insulin sensitivity. However, it remains unclear whether the evolving hepatic insulin resistance is due to acute lipid overload or the result of induced adipose tissue inflammation and consequent dysfunctional adipose tissue-liver cross-talk. In the present study, feeding C57Bl6/J mice a fat-enriched diet [high-fat diet (HFD)] for 4 days induced glucose intolerance, hepatic insulin resistance (as assessed by hyperinsulinemic euglycemic clamp studies), and hepatic steatosis as well as adipose tissue inflammation (i.

View Article and Find Full Text PDF