Publications by authors named "Michael S DeClue"

We report the preparation and use of an N-methyl picolinium carbamate protecting group for applications in a phototriggered nonenzymatic DNA phosphoramidate ligation reaction. Selective 5'-amino protection of a modified 13-mer oligonucleotide is achieved in aqueous solution by reaction with an N-methyl-4-picolinium carbonyl imidazole triflate protecting group precursor. Deprotection is carried out by photoinduced electron transfer from Ru(bpy)(3)(2+) using visible light photolysis and ascorbic acid as a sacrificial electron donor.

View Article and Find Full Text PDF

One of the essential elements of any cell, including primitive ancestors, is a structural component that protects and confines the metabolism and genes while allowing access to essential nutrients. For the targeted protocell model, bilayers of decanoic acid, a single-chain fatty acid amphiphile, are used as the container. These bilayers interact with a ruthenium-nucleobase complex, the metabolic complex, to convert amphiphile precursors into more amphiphiles.

View Article and Find Full Text PDF

We report the use of photoinduced electron transfer to drive reductive cleavage of an ester to produce bilayer-forming molecules; specifically, visible photolysis in a mixture of a decanoic acid ester precursor, hydrogen donor molecules, and a ruthenium-based photocatalyst that employs a linked nucleobase (8-oxo-guanine) as an electron donor generates decanoic acid. The overall transformation of the ester precursor to yield vesicles represents the use of an external energy source to convert nonstructure forming molecules into amphiphiles that spontaneously assemble into vesicles. The core of our chemical reaction system uses an 8-oxo-G-Ru photocatalyst, a derivative of [tris(2,2'-bipyridine)-Ru(II)](2+).

View Article and Find Full Text PDF

The versatile biosynthetic intermediate isochorismate decomposes in aqueous buffer by two competitive pathways, one leading to isoprephenate by a facile Claisen rearrangement and the other to salicylate via elimination of the enolpyruvyl side chain. Computation suggests that both processes are concerted but asynchronous pericyclic reactions, with considerable C-O cleavage in the transition state but relatively little C-C bond formation (rearrangement) or hydrogen atom transfer to the enolpyruvyl side chain (elimination). Kinetic experiments show that rearrangement is roughly 8-times more favorable than elimination.

View Article and Find Full Text PDF

Isochorismate pyruvate lyase (IPL) catalyzes the cleavage of isochorismate to give salicylate and pyruvate, a key step in bacterial siderophore biosynthesis. We investigated the enzyme from Pseudomonas aeruginosa using isochorismate selectively deuterated at C2 as a substrate. Monitoring the reaction by 2H NMR spectroscopy revealed that the label is quantitatively transferred from C2 to C9, producing stoichiometric amounts of [3-2H]pyruvate as product.

View Article and Find Full Text PDF

The important biosynthetic intermediate chorismate reacts thermally by two competitive pathways, one leading to 4-hydroxybenzoate via elimination of the enolpyruvyl side chain, and the other to prephenate by a facile Claisen rearrangement. Measurements with isotopically labeled chorismate derivatives indicate that both are concerted sigmatropic processes, controlled by the orientation of the enolpyruvyl group. In the elimination reaction of [4-2H]chorismate, roughly 60% of the label was found in pyruvate after 3 h at 60 degrees C.

View Article and Find Full Text PDF

Polysiloxane acts as a modular scaffold for macromolecular reagent development. Two separate components were covalently integrated into one material, one constituent provided reagent functionality, the other modulated solubility. In particular cinchona alkaloid based ligands used in the osmium tetroxide catalyzed asymmetric dihydroxylation (AD) reaction were covalently attached to commercially available polysiloxane.

View Article and Find Full Text PDF

Several dienes of varying steric bulk containing an enol carbonate have been synthesized and reacted selectively with ozone at the isolated double bonds. Rate measurements have been made for ozonolysis in a series of substituted cyclohexenes to demonstrate the unusually slow reactivity of the enol carbonate. Proton and carbon NMR chemical shifts have been presented to show that the enol carbonate is not particularly electron deficient in its double bond.

View Article and Find Full Text PDF