A genome-wide PiggyBac transposon-mediated screen and a resistance screen in a PIK3CA-mutated murine tumor model reveal NF1 loss in mammary tumors resistant to the phosphatidylinositol 3-kinase α (PI3Kα)-selective inhibitor alpelisib. Depletion of NF1 in PIK3CA breast cancer cell lines and a patient-derived organoid model shows that NF1 loss reduces sensitivity to PI3Kα inhibition and correlates with enhanced glycolysis and lower levels of reactive oxygen species (ROS). Unexpectedly, the antioxidant N-acetylcysteine (NAC) sensitizes NF1 knockout cells to PI3Kα inhibition and reverts their glycolytic phenotype.
View Article and Find Full Text PDFMetastasis is the main cause of deaths related to solid cancers. Active transcriptional programmes are known to regulate the metastatic cascade but the molecular determinants of metastatic colonization remain elusive. Using an inducible piggyBac (PB) transposon mutagenesis screen, we have shown that overexpression of the transcription factor nuclear factor IB (NFIB) alone is sufficient to enhance primary mammary tumour growth and lung metastatic colonization.
View Article and Find Full Text PDFCurr Opin Genet Dev
February 2019
Acquired resistance is a major limitation for the successful treatment of cancer patients. Although numerous efficacious cancer therapeutics have been developed in the past decades, resistance arises due to a variety of reasons including tumoral genetic alterations, or modulation of factors in the tumor environment. Understanding the mechanistic reasons for tumor relapse supports the identification of novel combination therapies that could lead to more durable responses.
View Article and Find Full Text PDFInhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent deletion in human cancer that, through inactivation of , activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201.
View Article and Find Full Text PDFProfiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications.
View Article and Find Full Text PDFHeat shock protein 90 (HSP90) is involved in protein folding and functions as a chaperone for numerous client proteins, many of which are important in non-small cell lung cancer (NSCLC) pathogenesis. We sought to define preclinical effects of the HSP90 inhibitor NVP-AUY922 and identify predictors of response. We assessed in vitro effects of NVP-AUY922 on proliferation and protein expression in NSCLC cell lines.
View Article and Find Full Text PDFInhibitors of the Hsp90 molecular chaperone are showing promise as anti-cancer agents. Here we describe a series of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors that were identified following structure-driven optimization of purine hits revealed by NMR based screening of a proprietary fragment library. Ligand-Hsp90 X-ray structures combined with molecular modeling led to the rational displacement of a conserved water molecule leading to enhanced affinity for Hsp90 as measured by fluorescence polarization, isothermal titration calorimetry and surface plasmon resonance assays.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is a ubiquitously expressed molecular chaperone with ATPase activity involved in the conformational maturation and stability of key signaling molecules involved in cell proliferation, survival, and transformation. Through its ability to modulate multiple pathways involved in oncogenesis, Hsp90 has generated considerable interest as a therapeutic target. NVP-BEP800 is a novel, fully synthetic, orally bioavailable inhibitor that binds to the NH(2)-terminal ATP-binding pocket of Hsp90.
View Article and Find Full Text PDFCurr Opin Drug Discov Devel
March 2010
The development of small molecular mass Hsp90 inhibitors has become an increasingly competitive field of research in recent years. Progress in preclinical and clinical research has provided increasing evidence that Hsp90 represents a promising molecular target for the treatment of cancer and other diseases. Although many challenges remain, recent clinical trial results for the most clinically advanced inhibitors indicate that clinical proof of concept in oncology therapy is achievable, and that Hsp90 inhibitors have the potential to contribute to the collection of anticancer treatments available to clinicians and patients in the near future.
View Article and Find Full Text PDFCurr Opin Drug Discov Devel
March 2010
Coronary artery disease consists of obstruction (stenosis) of the coronary arteries by the deposition of atherosclerotic plaques, resulting in an insufficient supply of oxygen to the heart muscle. Treatment options include the insertion of a stent - a metal mesh tube - into the obstructed vessel to keep the artery open, thus preventing acute occlusion and restenosis. The occlusion of vessels resulting from subacute stent thrombosis and late in-stent restenosis are potential complications after successful revascularization.
View Article and Find Full Text PDFNVP-AUY922, a potent heat shock protein (HSP) 90 inhibitor, downregulates the expression of many oncogenic proteins, including the human epidermal growth factor receptor-2 (HER2). Because HER2 downregulation is a potential biomarker for early response to HSP90-targeted therapies, we used the (89)Zr-labelled HER2 antibody trastuzumab to quantify the alterations in HER2 expression after NVP-AUY922 treatment with HER2 positron emission tomography (PET) imaging. The HER2 overexpressing human SKOV-3 ovarian tumour cell line was used for in vitro experiments and as xenograft model in nude athymic mice.
View Article and Find Full Text PDFInhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe novel 2-aminothieno[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors, which were designed by combining structural elements of distinct low affinity hits generated from fragment-based and in silico screening exercises in concert with structural information from X-ray protein crystallography. Examples from this series have high affinity (IC50 = 50-100 nM) for Hsp90 as measured in a fluorescence polarization (FP) competitive binding assay and are active in human cancer cell lines where they inhibit cell proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72.
View Article and Find Full Text PDFBackground: Molecular targeting has become a prominent concept in cancer treatment and heat shock protein 90 (Hsp90) inhibitors are suggested as promising anticancer drugs. The Hsp90 complex is one of the chaperones that facilitate the refolding of unfolded or misfolded proteins and plays a role for key oncogenic proteins such as Her2, Raf-1, Akt/PKB, and mutant p53. NVP-AUY922 is a novel low-molecular Hsp90 inhibitor, currently under clinical development as an anticancer drug.
View Article and Find Full Text PDFIntroduction: Heat shock protein 90 (HSP90) is a key component of a multichaperone complex involved in the post-translational folding of a large number of client proteins, many of which play essential roles in tumorigenesis. HSP90 has emerged in recent years as a promising new target for anticancer therapies.
Methods: The concentrations of the HSP90 inhibitor NVP-AUY922 required to reduce cell numbers by 50% (GI50 values) were established in a panel of breast cancer cell lines and patient-derived human breast tumors.
Heat shock protein (Hsp)90 is a molecular chaperone that is responsible for the correct folding of a large number of proteins, which allows these proteins to achieve their functional conformation. Client proteins of Hsp90 include many overexpressed or mutated oncogenes that are known to be critical for the transformed phenotype observed in tumors. The compounds 17-AAG (Kosan Biosciences Inc/National Cancer Institute) and 17-DMAG (Kosan Biosciences Inc/National Cancer Institute) are Hsp90 inhibitors that are derived from the prototypical ansamycin natural product Hsp90 inhibitor geldanamycin.
View Article and Find Full Text PDFThe E2F family of transcription factors play an essential role in the regulation of cell cycle progression. In a screen for E2F-regulated genes we identified a novel E2F family member, E2F7. Like the recently identified E2F-like proteins of Arabidopsis, E2F7 has two DNA binding domains and binds to the E2F DNA binding consensus site independently of DP co-factors.
View Article and Find Full Text PDFCyclin G1 is a transcriptional target of the tumor suppressor p53, and its expression is increased after DNA damage. Recent data show that cyclin G1 can regulate the levels of p53 by a mechanism that involves dephosphorylation of Mdm2 by protein phosphatase 2A. To understand the biologic role of cyclin G1, we have generated cyclin G1-deficient mice.
View Article and Find Full Text PDF