Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.
View Article and Find Full Text PDFPost marketing safety surveillance depends in part on the ability to detect concerning clinical events at scale. Spontaneous reporting might be an effective component of safety surveillance, but it requires awareness and understanding among healthcare professionals to achieve its potential. Reliance on readily available structured data such as diagnostic codes risk under-coding and imprecision.
View Article and Find Full Text PDFThe value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results across studies. Here, we performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) and genetic data to understand which decision points may affect performance.
View Article and Find Full Text PDFObjective: To develop and validate algorithms for predicting 30-day fatal and nonfatal opioid-related overdose using statewide data sources including prescription drug monitoring program data, Hospital Discharge Data System data, and Tennessee (TN) vital records. Current overdose prevention efforts in TN rely on descriptive and retrospective analyses without prognostication.
Materials And Methods: Study data included 3 041 668 TN patients with 71 479 191 controlled substance prescriptions from 2012 to 2017.
Background: NCBI's Gene Expression Omnibus (GEO) is a rich community resource containing millions of gene expression experiments from human, mouse, rat, and other model organisms. However, information about each experiment (metadata) is in the format of an open-ended, non-standardized textual description provided by the depositor. Thus, classification of experiments for meta-analysis by factors such as gender, age of the sample donor, and tissue of origin is not feasible without assigning labels to the experiments.
View Article and Find Full Text PDFPurposeThe Genomic Oligoarray and SNP Array Evaluation Tool 3.0 matches candidate genes within regions of homozygosity with a patient's phenotype, by mining OMIM for gene entries that contain a Clinical Synopsis. However, the tool cannot identify genes/disorders whose OMIM entries lack a descriptor of the mode of (Mendelian) inheritance.
View Article and Find Full Text PDF