JACC Clin Electrophysiol
March 2024
Recently, polarity-dependent shock failures were reported in implantable cardioverter-defibrillators caused by structural failure in the high-voltage feedthrough. Short circuits may occur when the right ventricular coil is cathodal for phase 1 of biphasic shocks (cathodal shock). This viewpoint proposes a mechanism for observed polarity dependence and considers whether the same mechanism may apply in other shock-induced, short circuits.
View Article and Find Full Text PDFThe recently developed compound, tetramethylthiocycloheptyne sulfoximine (TMTHSI), has shown to be a promising strained alkyne for strain-promoted azide-alkyne cycloaddition (SPAAC), metal-free click chemistry. This research explores the properties of TMTHSI-based compounds via three aspects: (1) large-scale production, (2) unique stability in acidic conditions and its subsequent use in peptide synthesis, and (3) the functionalization of antibodies. Here, it is shown that (1) scale-up is achieved on a scale of up to 100 g.
View Article and Find Full Text PDFThe production of regio- and stereoselectively hydroxylated steroids is of high pharmaceutical interest and can be achieved by cytochrome P450-based biocatalysts. CYP260A1 from Sorangium cellulosum strain So ce56 catalyzes hydroxylation of C19 or C21 steroids at the very unique 1α-position. However, the conversion of progesterone (PROG) by CYP260A1 is very unselective.
View Article and Find Full Text PDFIn this study, we report the crystal structure of the cytochrome P450 CYP260A1 (PDB 5LIV) from the myxobacterium Sorangium cellulosum So ce56. In addition, we investigated the hydroxylation of 11-deoxycorticosterone by CYP260A1 by reconstituting the enzyme with the surrogate redox partners adrenodoxin and adrenodoxin reductase. The major product of this steroid conversion was identified as 1α-hydroxy-11-deoxycorticosterone, a novel Δ4 C-21 steroidal derivative.
View Article and Find Full Text PDFEscherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2.
View Article and Find Full Text PDFCytochromes P450 catalyze a variety of synthetically useful reactions. However, it is difficult to determine their physiological or artificial functions when a plethora of orphan P450 systems are present in a genome. CYP260A1 from Sorangium cellulosum So ce56 is a new member among the 21 available P450s in the strain.
View Article and Find Full Text PDFSesquiterpenes are natural products derived from the common precursor farnesyl pyrophosphate (FPP) but are highly diverse in structure and function. Cytochrome P450 enzymes (P450s) exhibit the unique ability to introduce molecular oxygen into non-activated C-H bonds. In plant biosynthetic pathways, P450s commonly derivatize sesquiterpene hydrocarbons.
View Article and Find Full Text PDFThe members of the CYP109 family (CYP109C1, CYP109C2, and CYP109D1) from Sorangium cellulosum So ce56 are among the 21 P450 enzymes, of which only CYP109D1 and CYP264B1 have so far been functionally characterized. Here, we attempted to characterize two other P450s (CYP109C1 and CYP109C2) for the first time and compare their biochemical, biophysical, and functional properties to those of the fatty acid hydroxylating CYP109D1. Considering the physiological importance of fatty acids, we investigated saturated fatty acid binding and conversion for all members of the CYP109 family.
View Article and Find Full Text PDFCytochromes P450 monooxygenases are highly interesting biocatalysts for biotechnological applications, since they perform a diversity of reactions on a broad range of organic molecules. Nevertheless, the application of cytochromes P450 is limited compared to other enzymes mainly because of the necessity of a functional redox chain to transfer electrons from NAD(P)H to the monooxygenase. In this study, we established a novel robust redox chain based on adrenodoxin, which can deliver electrons to mitochondrial, bacterial and microsomal P450s.
View Article and Find Full Text PDFMammalian adrenodoxin (Adx) has been known for many years as an essential electron mediator in mitochondrial cytochrome P450 systems. Because of its ability to support several cytochrome P450 enzymes, it is involved not only in adrenal steroid hormone biosynthesis but also in vitamin D and bile acid metabolism. Recently, Adx is increasingly gaining attention because of its potential for pharmaceutical industry and biotechnology.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2010
Sesquiterpenes are particularly interesting as flavorings and fragrances or as pharmaceuticals. Regio- or stereoselective functionalizations of terpenes are one of the main goals of synthetic organic chemistry, which are possible through radical reactions but are not selective enough to introduce the desired chiral alcohol function into those compounds. Cytochrome P450 monooxygenases are versatile biocatalysts and are capable of performing selective oxidations of organic molecules.
View Article and Find Full Text PDF