Publications by authors named "Michael Reimer"

Various noncollinear spin textures and magnetic phases have been predicted in twisted two-dimensional CrI due to competing ferromagnetic (FM) and antiferromagnetic (AFM) interlayer exchange from moiré stacking-with potential spintronic applications even when the underlying material possesses a negligible Dzyaloshinskii-Moriya or dipole-dipole interaction. Recent measurements have shown evidence of coexisting FM and AFM layer order in small-twist-angle CrI bilayers and double bilayers. Yet, the nature of the magnetic textures remains unresolved and possibilities for their manipulation and electrical readout are unexplored.

View Article and Find Full Text PDF

The realization of a semiconductor near-unity absorber in the infrared will provide new capabilities to transform applications in sensing, health, imaging, and quantum information science, especially where portability is required. Typically, commercially available portable single-photon detectors in the infrared are made from bulk semiconductors and have efficiencies well below unity. Here, we design a novel semiconductor nanowire metamaterial, and show that by carefully arranging an InGaAs nanowire array and by controlling their shape, we demonstrate near-unity absorption efficiency at room temperature.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a high-risk malignancy characterized by a diverse spectrum of somatic genetic alterations. The mechanisms by which these mutations contribute to leukemia development and how this informs the use of targeted therapies is critical to improving outcomes for patients. Importantly, how to target loss-of-function mutations has been a critical challenge in precision medicine.

View Article and Find Full Text PDF

Transcriptional enhancers have been defined by their ability to operate independent of distance and orientation in plasmid-based reporter assays of gene expression. At present, histone marks are used to identify and define enhancers but do not consider the endogenous role of an enhancer in the context of native chromatin. We employed a combination of genomic editing, single cell analyses, and sequencing approaches to investigate a Nanog-associated cis-regulatory element, which has been reported by others to be either an alternative promoter or a super-enhancer.

View Article and Find Full Text PDF

In this study, pasting and gelling behaviors of flours were investigated at heating temperatures of 95-140 °C. Overall, both peak and breakdown viscosities of the flours were positively correlated with starch contents (p < 0.01) but inversely correlated with protein (p < 0.

View Article and Find Full Text PDF

Natural killer (NK) cells generate proinflammatory cytokines that are required to contain infections and tumor growth. However, the posttranscriptional mechanisms that regulate NK cell functions are not fully understood. Here, we define the role of the microRNA cluster known as (which includes , and ) in NK cell-mediated proinflammatory responses.

View Article and Find Full Text PDF

Background: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes.

View Article and Find Full Text PDF

Superconducting nanowire single-photon detectors with peak efficiencies above 90% and unrivalled timing jitter (<30 ps) have emerged as a potent technology for quantum information and sensing applications. However, their high cost and cryogenic operation limit their widespread applicability. Here, we present an approach using tapered InP nanowire p-n junction arrays for high-efficiency, broadband and high-speed photodetection without the need for cryogenic cooling.

View Article and Find Full Text PDF

Semiconductor quantum dots are crucial parts of the photonic quantum technology toolbox because they show excellent single-photon emission properties in addition to their potential as solid-state qubits. Recently, there has been an increasing effort to deterministically integrate single semiconductor quantum dots into complex photonic circuits. Despite rapid progress in the field, it remains challenging to manipulate the optical properties of waveguide-integrated quantum emitters in a deterministic, reversible, and nonintrusive manner.

View Article and Find Full Text PDF

Splicing factor 3B1 (SF3B1) is a core splicing protein that stabilizes the interaction between the U2 snRNA and the branch point in the mRNA target during splicing. SF3B1 is heavily phosphorylated at its N terminus and a substrate of cyclin-dependent kinases (CDKs). Although SF3B1 phosphorylation coincides with splicing catalysis, the functional significance of SF3B1 phosphorylation is largely undefined.

View Article and Find Full Text PDF

IQGAP1 interacts with a number of binding partners through a calponin homology domain (CHD), a WW motif, IQ repeats, a Ras GAP-related domain (GRD), and a conserved C-terminal (CT) domain. Among various biological and cellular functions, IQGAP1 is known to play a role in actin cytoskeleton dynamics during membrane ruffling and lamellipodium protrusion. In addition, phosphorylation near the CT domain is thought to control IQGAP1 activity through regulation of intramolecular interaction.

View Article and Find Full Text PDF

In the continuous search for better tissue engineering scaffolds it has become increasingly clear that the substrate properties dramatically affect cell responses. Here we compared cells from a physiologically stiff tissue, melanoma, to cells isolated from a physiologically soft tissue, brain. We measured the cell line responses to laminin immobilized onto glass or polyacrylamide hydrogels tuned to have a Young's modulus ranging from 1 to 390 kPa.

View Article and Find Full Text PDF

Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive.

View Article and Find Full Text PDF

Although SIN3A is required for the survival of early embryos and embryonic stem cells (ESCs), the role of SIN3A in the maintenance and establishment of pluripotency remains unclear. Here, we find that the SIN3A/HDAC corepressor complex maintains ESC pluripotency and promotes the generation of induced pluripotent stem cells (iPSCs). Members of the SIN3A/HDAC corepressor complex are enriched in an extended NANOG interactome and function in transcriptional coactivation in ESCs.

View Article and Find Full Text PDF

Super-enhancers are tissue-specific cis-regulatory elements that drive expression of genes associated with cell identity and malignancy. A cardinal feature of super-enhancers is that they are transcribed to produce enhancer-derived RNAs (eRNAs). It remains unclear whether super-enhancers robustly activate genes in situ and whether their functions are attributable to eRNAs or the DNA element.

View Article and Find Full Text PDF

Recent work has shown that RNA polymerase II-mediated transcription at distal cis-regulatory elements serves as a mark of highly active enhancers. Production of noncoding RNAs at enhancers, termed eRNAs, correlates with higher expression of genes that the enhancer interacts with; hence, eRNAs provide a new tool to model gene activity in normal and disease tissues. Moreover, this unique class of noncoding RNA has diverse roles in transcriptional regulation.

View Article and Find Full Text PDF

Background: The cohesin complex consists of multiple core subunits that play critical roles in mitosis and transcriptional regulation. The cohesin-associated protein Wapal plays a central role in off-loading cohesin to facilitate sister chromatid separation, but its role in regulating mammalian gene expression is not understood. We used embryonic stem cells as a model, given that the well-defined transcriptional regulatory circuits were established through master transcription factors and epigenetic pathways that regulate their ability to maintain a pluripotent state.

View Article and Find Full Text PDF

Semiconductor nanowires are nanoscale structures holding promise in many fields such as optoelectronics, quantum computing, and thermoelectrics. Nanowires are usually grown vertically on (111)-oriented substrates, while (100) is the standard in semiconductor technology. The ability to grow and to control impurity doping of ⟨100⟩ nanowires is crucial for integration.

View Article and Find Full Text PDF

A major step toward fully integrated quantum optics is the deterministic incorporation of high quality single photon sources in on-chip optical circuits. We show a novel hybrid approach in which preselected III-V single quantum dots in nanowires are transferred and integrated in silicon based photonic circuits. The quantum emitters maintain their high optical quality after integration as verified by measuring a low multiphoton probability of 0.

View Article and Find Full Text PDF

A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semiconductor quantum dots embedded in nanowire waveguides potentially satisfy all of these requirements; however, although theoretically predicted, entanglement has not yet been demonstrated for a nanowire quantum dot.

View Article and Find Full Text PDF

Quantum communication as well as integrated photonic circuits require single photons propagating in a well-defined Gaussian mode. However, tailoring the emission mode to a Gaussian remains an unsolved challenge for solid-state quantum emitters due to their random positioning in the host material or photonic structure. Here, we overcome these limitations by embedding a semiconductor quantum dot in a tapered nanowire waveguide.

View Article and Find Full Text PDF

IQGAP1 has emerged as a key component in the regulation of cytoskeleton dynamics during cell migration, maintenance of adherens junctions, microbial pathogenesis and intracellular trafficking. IQGAP1 is known to localize to the protruding edge of lamellipodia in a variety of cell types and interact with regulators of actin dynamics. Here, we provide evidence suggesting a novel role of IQGAP1 in cell motility through cell edge retraction.

View Article and Find Full Text PDF

Background: Substance P is a sensory nerve neuropeptide located near coronary vessels in the heart. Therefore, substance P may be one of the first mediators released in the heart in response to hypertension, and can contribute to adverse myocardial remodeling via interactions with the neurokinin-1 receptor. We asked: 1) whether substance P promoted cardiac hypertrophy, including the expression of fetal genes known to be re-expressed during pathological hypertrophy; and 2) the extent to which substance P regulated collagen production and fibrosis.

View Article and Find Full Text PDF