Proc Natl Acad Sci U S A
January 2017
Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief.
View Article and Find Full Text PDFChlorpromazine (CPZ), a potent nicotinic acetylcholine receptor (nAChR) noncompetitive antagonist, binds with higher affinity in the ion channel in the desensitized state than in the closed channel state and with low affinity to additional sites in nAChR-rich membranes. For nAChR equilibrated with agonist, we confirm previous reports that [(3)H]CPZ occupies a site near the cytoplasmic end of the M2 ion channel domain, photolabeling positions M2-2, M2-6, and/or M2-9 in each subunit. We find that [(3)H]CPZ also binds at the extracellular end of the channel, photolabeling amino acids at positions M2-16 (alpha,gamma), M2-17 (alpha,beta,delta), and M2-20 (alpha,beta,delta).
View Article and Find Full Text PDFAffinity selection-mass spectrometry (AS-MS) techniques assess the binding of candidate molecules to immobilized or soluble receptors, and these methods are gaining acceptance in high throughput screening laboratories as valuable complements to traditional drug discovery technologies. A diversity of receptor types have been evaluated by AS-MS, including those that are difficult to screen using traditional biochemical approaches. AS-MS techniques that couple liquid chromatography-MS with size-based separation methods, such as ultrafiltration, gel permeation, or size-exclusion chromatography, are particularly amenable to the demands of MS-based screening and have demonstrated the greatest success across a broad range of drug targets.
View Article and Find Full Text PDFScreening assays using target-based affinity selection coupled with high-sensitivity detection technologies to identify small-molecule hits from chemical libraries can provide a useful discovery approach that complements traditional assay systems. Affinity selection-mass spectrometry (AS-MS) is one such methodology that holds promise for providing selective and sensitive high-throughput screening platforms. Although AS-MS screening platforms have been used to discover small-molecule ligands of proteins from many target families, they have not yet been used routinely to screen integral membrane proteins.
View Article and Find Full Text PDFThe interactions of a photoreactive analogue of benzoylcholine, 4-azido-2,3,5,6-tetrafluorobenzoylcholine (APFBzcholine), with nicotinic acetylcholine receptors (nAChRs) were studied using electrophysiology and photolabeling. APFBzcholine acted as a low-efficacy partial agonist, eliciting maximal responses that were 0.3 and 0.
View Article and Find Full Text PDFJ Comput Aided Mol Des
October 2004
Using the hyaluronic acid (HA) binding region of the receptor for hyaluronan-mediated motility (RHAMM) as a model, a molecular perspective for peptide mimicry of the natural ligand was established by comparing the interaction sites of HA and unnatural peptide-ligands to RHAMM. This was accomplished by obtaining a series of octapeptide-ligands through screening experiments that bound to the HA binding domains of RHAMM (amino acids 517-576) and could be displaced by HA. These molecules were computationally docked onto a three-dimensional NMR based model of RHAMM.
View Article and Find Full Text PDFTo identify binding domains in a ligand-gated ion channel for etomidate, an intravenous general anesthetic, we photolabeled nicotinic acetylcholine receptor (nAChR)-rich membranes from Torpedo electric organ with a photoactivatable analog, [(3)H]azietomidate. Based upon the inhibition of binding of the noncompetitive antagonist [(3)H]phencyclidine, azietomidate and etomidate bind with 10-fold higher affinity to nAChRs in the desensitized state (IC(50) = 70 microm) than in the closed channel state. In addition, both drugs between 0.
View Article and Find Full Text PDFTo locate general anesthetic binding sites on ligand-gated ion channels, a diazirine derivative of the potent intravenous anesthetic, R-(+)-etomidate (2-ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate), has been synthesized and characterized. R-(+)-Azietomidate [2-(3-methyl-3H-diaziren-3-yl)ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate] anesthetizes tadpoles with an EC(50) of 2.2 microM, identical to that of R-(+)-etomidate.
View Article and Find Full Text PDF[(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner.
View Article and Find Full Text PDF