Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water.
View Article and Find Full Text PDFThe analysis of volatiles in magmatic systems can be used to constrain the volatile content of the Earth's mantle and the influence that magmatic degassing has on the chemistry of the oceans and the atmosphere. But most volatile elements have very low solubilities in magmas at atmospheric pressure, and therefore virtually all erupted lavas are degassed and do not retain their primary volatile signatures. Here we report the undersaturated pre-eruptive volatile content for a suite of mid-ocean-ridge basalts from the Siqueiros intra-transform spreading centre.
View Article and Find Full Text PDF