Publications by authors named "Michael R Morissette"

Background: Heart failure is a growing cause of morbidity and mortality. Cardiac phosphatidylinositol 3-kinase signaling promotes cardiomyocyte survival and function, but it is paradoxically activated in heart failure, suggesting that chronic activation of this pathway may become maladaptive. Here, we investigated the downstream phosphatidylinositol 3-kinase effector, serum- and glucocorticoid-regulated kinase-1 (SGK1), in heart failure and its complications.

View Article and Find Full Text PDF

Myostatin is a highly conserved negative regulator of skeletal muscle growth. Loss of functional myostatin in cattle, mice, sheep, dogs, and humans results in increased muscle mass. The molecular mechanisms responsible for this increase in muscle growth are not fully understood.

View Article and Find Full Text PDF

Inhibitors of myostatin, a negative regulator of skeletal muscle mass, are being developed to mitigate aging-related muscle loss. Knock-out (KO) mouse studies suggest myostatin also affects adiposity, glucose handling and cardiac growth. However, the cardiac consequences of inhibiting myostatin remain unclear.

View Article and Find Full Text PDF

Myostatin is a highly conserved, potent negative regulator of skeletal muscle hypertrophy in many species, from rodents to humans, although its mechanisms of action are incompletely understood. Transcript profiling of hearts from a genetic model of cardiac hypertrophy revealed dramatic upregulation of myostatin, not previously recognized to play a role in the heart. Here we show that myostatin abrogates the cardiomyocyte growth response to phenylephrine in vitro through inhibition of p38 and the serine-threonine kinase Akt, a critical determinant of cell size in many species from drosophila to mammals.

View Article and Find Full Text PDF

Accumulating evidence suggests that apoptosis is not only a common feature of diverse forms of heart failure but also contributes to disease pathogenesis and progression. This contribution of apoptotic signaling to heart failure could reflect not only loss of cardiomyocytes but also dysfunction of surviving cells. The convergence of signaling mechanisms controlling both cardiomyocyte survival and function provides an opportunity for therapeutic strategies that target these pathways.

View Article and Find Full Text PDF

The effect of the lysophospholipid, lysophosphatidic acid (LPA), on signaling and hypertrophy of neonatal rat ventricular cardiomyocytes was examined. Myocytes express mRNA for all three G-protein-coupled LPA receptor subtypes (LPA(1)/Edg-2, LPA(2)/Edg-4, and LPA(3)/Edg-7) as indicated by RT-PCR analysis. LPA inhibits isoproterenol-stimulated cyclic AMP accumulation with an IC(50) approximately 40 nM and promotes phosphorylation of ERK-1/2.

View Article and Find Full Text PDF

During hypertrophy the heart increases its utilization of glucose and decreases that of fatty acids, resuming a fetal pattern of substrate metabolism. As demonstrated here, GLUT1 protein expression is increased in association with in vivo pressure-overload-induced hypertrophy. The relationship of changes in GLUT1 to enhanced glucose uptake and to cardiomyocyte hypertrophy and survival is not known.

View Article and Find Full Text PDF

The delta isoform of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) predominates in the heart. To investigate the role of CaMKII in cardiac function, we made transgenic (TG) mice that express the nuclear delta(B) isoform of CaMKII. The expressed CaMKIIdelta(B) transgene was restricted to the myocardium and highly concentrated in the nucleus.

View Article and Find Full Text PDF