Publications by authors named "Michael R Krames"

Synthesis of high quality colloidal Cerium(III) doped yttrium aluminum garnet (Y Al O :Ce , "YAG:Ce") nanoparticles (NPs) meeting simultaneously both ultra-small size and high photoluminescence (PL) performance is challenging, as generally a particle size/PL trade-off has been observed for this type of nanomaterials. The glycothermal route is capable to yield ultra-fine crystalline colloidal YAG:Ce nanoparticles with a particle size as small as 10 nm but with quantum yield (QY) no more than 20%. In this paper, the first ultra-small YPO -YAG:Ce nanocomposite phosphor particles having an exceptional QY-to-size performance with an QY up to 53% while maintaining the particle size ≈10 nm is reported.

View Article and Find Full Text PDF

Modern urban human activities are largely restricted to the indoors, deprived of direct sunlight containing visible and near-infrared (NIR) wavelengths at high irradiance levels. Therapeutic exposure to doses of red and NIR, known as photobiomodulation (PBM), has been effective for a broad range of conditions. In a double-blind, randomized, placebo-controlled study, we aimed to assess the effects of a PBM home set-up on various aspects of well-being, health, sleep, and circadian rhythms in healthy human subjects with mild sleep complaints.

View Article and Find Full Text PDF

Commercial lighting for ambient and display applications is mostly based on blue light-emitting diodes (LEDs) combined with phosphor materials that convert some of the blue light into green, yellow, orange, and red. Not many phosphor materials can offer stable output under high incident light intensities for thousands of operating hours. Even the most promising LED phosphors saturate in high-power applications, that is, they show decreased light output.

View Article and Find Full Text PDF

The renowned yellow phosphor yttrium aluminum garnet (YAG) doped with trivalent cerium has found its way into applications in many forms: as powder of micron sized crystals, as a ceramic, and even as a single crystal. However, additional technological advancement requires providing this material in new form factors, especially in terms of particle size. Where many materials have been developed on the nanoscale with excellent optical properties (e.

View Article and Find Full Text PDF

Phosphors have been used successfully for both research and commercial applications for decades. Eu-doped materials are especially promising, because of their extremely stable, efficient, and narrow red emission lines. Although these emission properties are ideal for lighting applications, weak absorption in the blue spectral range has until now prevented the use of Eu-based phosphors in applications based on blue light-emitting diodes.

View Article and Find Full Text PDF

We study the quantification of whiteness perception under illumination from various light sources. We discuss an existing metric for sources with high correlated color temperature (CCT), CIE whiteness, and propose a procedure to adapt it to sources of any CCT. We illustrate our approach by comparing the ability of different warm-white sources to render whiteness.

View Article and Find Full Text PDF

Twenty-two measures of color rendition have been reviewed and summarized. Each measure was computed for 401 illuminants comprising incandescent, light-emitting diode (LED) -phosphor, LED-mixed, fluorescent, high-intensity discharge (HID), and theoretical illuminants. A multidimensional scaling analysis (Matrix Stress = 0.

View Article and Find Full Text PDF