Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz attractors. A Lorenz qubit could be realized experimentally by combining qubit torsion, generated by real or simulated mean field dynamics, with linear amplification and dissipation.
View Article and Find Full Text PDFThere is great interest in using near-term quantum computers to simulate and study foundational problems in quantum mechanics and quantum information science, such as the scrambling measured by an out-of-time-ordered correlator (OTOC). Here we use an IBM Q processor, quantum error mitigation, and weaved Trotter simulation to study high-resolution operator spreading in a four-spin Ising model as a function of space, time, and integrability. Reaching four spins while retaining high circuit fidelity is made possible by the use of a physically motivated fixed-node variant of the OTOC, allowing scrambling to be estimated without overhead.
View Article and Find Full Text PDFSeveral techniques have been recently introduced to mitigate errors in near-term quantum computers without the overhead required by quantum error correcting codes. While most of the focus has been on gate errors, measurement errors are significantly larger than gate errors on some platforms. A widely used transition matrix error mitigation (TMEM) technique uses measured transition probabilities between initial and final classical states to correct subsequently measured data.
View Article and Find Full Text PDFThere is a tremendous interest in developing practical applications for noisy intermediate-scale quantum processors without the overhead required by full error correction. Near-term quantum information processing is especially challenging within the standard gate model, as algorithms quickly lose fidelity as the problem size and circuit depth grow. This has lead to a number of non-gate-model approaches such as analog quantum simulation and quantum annealing.
View Article and Find Full Text PDFThe performance of error correction protocols are necessary for understanding the operation of potential quantum computers, but this requires physical error models that can be simulated efficiently with classical computers. The Gottesmann-Knill theorem guarantees a class of such error models. Of these, one of the simplest is the Pauli twirling approximation (PTA), which is obtained by twirling an arbitrary completely positive error channel over the Pauli basis, resulting in a Pauli channel.
View Article and Find Full Text PDFWe introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation.
View Article and Find Full Text PDFWe construct simplified quantum circuits for Shor's order-finding algorithm for composites N given by products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that the order of a modulo N for every base a coprime to N is a power of 2, significantly reducing the usual phase estimation precision requirement. Prime factorization of 51 and 85 can be demonstrated with only 8 qubits and a modular exponentiation circuit consisting of no more than four CNOT gates.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2011
We use a standard model for the low-temperature electron-phonon interaction in metals to calculate the rate of thermal energy transfer between electrons and acoustic phonons in suspended metallic nanoshells. The electrons are treated as three-dimensional and noninteracting, whereas the vibrational modes are that of an thin cylindrical elastic shell of radius R with a free surface and thickness h. Disorder is neglected.
View Article and Find Full Text PDFIn quantum information processing, qudits (d-level systems) are an extension of qubits that could speed up certain computing tasks. We demonstrate the operation of a superconducting phase qudit with a number of levels d up to d = 5 and show how to manipulate and measure the qudit state, including simultaneous control of multiple transitions. We used the qudit to emulate the dynamics of single spins with principal quantum number s = 1/2, 1, and 3/2, allowing a measurement of Berry's phase and the even parity of integer spins (and odd parity of half-integer spins) under 2pi-rotation.
View Article and Find Full Text PDF