Publications by authors named "Michael Prentice"

Objective: We aimed to quantify aerosol concentrations produced during different dental procedures under different mitigation processes.

Method: Aerosol concentrations were measured by the Optical Particle Sensor (OPS) and Wideband Integrated Bioaerosol Sensor (WIBS) during routine, time-recorded dental procedures on a manikin head in a partitioned enclosure. Four different, standardised dental procedures were repeated in triplicate for three different mitigation measures.

View Article and Find Full Text PDF

Throughout the COVID-19 pandemic, meat processing plants have been vulnerable to outbreaks of SARS-CoV-2 infection. Transmission of the virus is difficult to control in these settings because of a combination of factors including environmental conditions and the specific nature of the work. This paper describes a retrospective outbreak investigation in a meat processing plant, a description of the measures taken to prevent or contain further outbreaks, and insights on how those with specific knowledge of the working environment of these plants can collaborate with public health authorities to ensure optimal outbreak control.

View Article and Find Full Text PDF

Catabolic bacterial microcompartments (BMC), or metabolosomes, are self-assembling structures formed by enzymes enclosed by porous protein shells. They provide a specialised environment inside bacterial cells separating a short catabolic pathway with reactive or toxic intermediates from the cytoplasm. Substrates for microcompartment metabolism like ethanolamine and 1,2-propanediol are constantly produced in the human intestine by bacterial metabolism of food or host cell components.

View Article and Find Full Text PDF

We describe 3 cases of adolescent varicella-zoster virus reactivation, complicated by aseptic meningitis, presenting to our institution in a 3-year period. These cases highlight varicella-zoster virus reactivation as an important cause of aseptic meningitis in the differential diagnosis of healthy adolescents, even in the absence of a characteristic exanthem. Evidence-based management recommendations are needed.

View Article and Find Full Text PDF

Metabolosomes, catabolic bacterial microcompartments (BMCs), are proteinaceous organelles that are associated with the breakdown of metabolites such as propanediol and ethanolamine. They are composed of an outer multicomponent protein shell that encases a specific metabolic pathway. Protein cargo found within BMCs is directed by the presence of an encapsulation peptide that appears to trigger aggregation before the formation of the outer shell.

View Article and Find Full Text PDF

In this study, a new approach to measure metabolic activity of yeast via the Crabtree effect is described. BARDS is an analytical technique developed to aid powder and tablet characterisation by monitoring changes in the compressibility of a solvent during solute dissolution. It is a rapid and simple method which utilises a magnetic stir bar to mix added solute and induce the acoustic resonance of a vessel containing a fixed volume of solvent.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal , both pathogenic enterohemorrhagic and commensal strains. During a UTI, urease-negative bacteria thrive, despite the comparative nutrient limitation in urine.

View Article and Find Full Text PDF

Processes for the biological removal of phosphate from wastewater rely on temporary manipulation of bacterial polyphosphate levels by phased environmental stimuli. In E. coli polyphosphate levels are controlled via the polyphosphate-synthesizing enzyme polyphosphate kinase (PPK1) and exopolyphosphatases (PPX and GPPA), and are temporarily enhanced by PPK1 overexpression and reduced by PPX overexpression.

View Article and Find Full Text PDF

Background: Antimicrobial resistance in long-term care facilities (LTCFs) poses a risk to elderly residents. The aim of this observational study was to investigate recent patterns of antimicrobial susceptibility in urine samples submitted to the Microbiology Laboratory at Cork University Hospital (CUH) from LTCFs in the greater Cork region. The antimicrobial susceptibilities of LTCF and General Practitioner (GP) urine samples sent to CUH, for patients aged over 65 years of age, were compared.

View Article and Find Full Text PDF

The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population.

View Article and Find Full Text PDF

Background: Cryo-electron tomography (cryo-ET) enables 3D imaging of macromolecular structures. Reconstructed cryo-ET images have a "missing wedge" of data loss due to limitations in rotation of the mounting stage. Most current approaches for structure determination improve cryo-ET resolution either by some form of sub-tomogram averaging or template matching, respectively precluding detection of shapes that vary across objects or are a priori unknown.

View Article and Find Full Text PDF

Yersinia enterocolitica is a zoonotic pathogen and a common cause of gastroenteritis in humans. The species is composed of six diverse phylogroups, of which strains of phylogroup 1 are considered non-pathogenic to mammals due to the lack of the major virulence plasmid pYV, and their lack of virulence in a mouse infection model. In the present report we present data examining the pathogenicity of strains of Y.

View Article and Find Full Text PDF

Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length.

View Article and Find Full Text PDF

The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages.

View Article and Find Full Text PDF

Lactobacillus reuteri metabolizes two similar three-carbon molecules, 1,2-propanediol and glycerol, within closed polyhedral subcellular bacterial organelles called bacterial microcompartments (metabolosomes). The outer shell of the propanediol-utilization (Pdu) metabolosome is composed of hundreds of mainly hexagonal protein complexes made from six types of protein subunits that share similar domain structures. The structure of the bacterial microcompartment protein PduB has a tandem structural repeat within the subunit and assembles into a trimer with pseudo-hexagonal symmetry.

View Article and Find Full Text PDF

Bacterial microcompartments are proteinaceous organelles that are found in a broad range of bacteria. They are composed of an outer protein shell that encases a specific metabolic process. Examples include the carboxysome, which houses enzymes associated with carbon fixation, and the propanediol metabolosome, which contains enzymes linked with the catabolism of propanediol to propionic acid.

View Article and Find Full Text PDF

Yersinia enterocolitica is a zoonotic agent that causes gastrointestinal disease in humans, as well as reactive arthritis and erythema nodosum. Enteropathogenic Yersinia are the etiological agents for yersiniosis, which can be acquired through the consumption of contaminated foods. As porcine animals are the main carriers of Y.

View Article and Find Full Text PDF

Tuberculosis has had significant effects on Ireland over the past two centuries, causing persistently higher morbidity and mortality than in neighbouring countries until the last decade. This study describes the results of genotyping and drug susceptibility testing of 171 strains of Mycobacterium tuberculosis complex isolated between January 2004 and December 2006 in a region of Ireland centred on the city of Cork. Spoligotype comparisons were made with the SpolDB4 database and clustered 130 strains in 23 groups, forty-one strains showed unique Spoligotyping patterns.

View Article and Find Full Text PDF

Compartmentalization is an important process, since it allows the segregation of metabolic activities and, in the era of synthetic biology, represents an important tool by which defined microenvironments can be created for specific metabolic functions. Indeed, some bacteria make specialized proteinaceous metabolic compartments called bacterial microcompartments (BMCs) or metabolosomes. Here we demonstrate that the shell of the metabolosome (representing an empty BMC) can be produced within E.

View Article and Find Full Text PDF

Mycobacterium bovis caused 3% of human tuberculosis cases in southwest Ireland during 1998-2006. Of 11 M. bovis strains genotyped, 9 belonged to common animal spoligotypes.

View Article and Find Full Text PDF

A Lactobacillus reuteri strain isolated from sourdough is known to produce the vitamin cobalamin. The organism requires this for glycerol cofermentation by a cobalamin-dependent enzyme, usually termed glycerol dehydratase, in the synthesis of the antimicrobial substance reuterin. We show that the cobalamin-synthesizing capacity of another L.

View Article and Find Full Text PDF

Many heterotrophic bacteria have the ability to make polyhedral structures containing metabolic enzymes that are bounded by a unilamellar protein shell (metabolosomes or enterosomes). These bacterial organelles contain enzymes associated with a specific metabolic process (e.g.

View Article and Find Full Text PDF

This chapter represents a summary of the findings from the Yersinia enterocolitica strain 8081 whole genome sequence and the associated microarray analysis. Section 1 & 2 provide an introduction to the species and an overview of the general features of the genome. Section 3 identifies important regions within the genome which highlight important differences in gene function that separate the three pathogenic Yersinias.

View Article and Find Full Text PDF

Bubonic plague is an often fulminant systemic zoonosis, caused by Yersinia pestis. Conventional microbiology, bacterial population genetics, and genome sequence data, all suggest that Y pestis is a recently evolved clone of the enteric pathogen Yersinia pseudotuberculosis. The genetic basis of this organism's rapid adaptation to its insect vector (the flea) with transmission between mammalian hosts by novel subcutaneous and pneumonic routes of infection is becoming clearer.

View Article and Find Full Text PDF