Diamond anvil cells are the most popular means of generating pressures above 2 GPa. However, in many experiments, such as nuclear magnetic resonance and x-ray absorption, the metallic pressurizing gasket (which confines much of the sample) represents an occluding barrier that requires a low Z gasket material (e.g.
View Article and Find Full Text PDFAbsorption of sufficiently energetic X-ray photons by a molecular system results in a cascade of ultrafast electronic relaxation processes which leads to a distortion and dissociation of its molecular structure. Here, we demonstrate that only decomposition of powdered cesium oxalate monohydrate induced by monochromatic X-ray irradiation under high pressure leads to the formation of cesium superoxide. Whereas, for an unhydrated form of cesium oxalate subjected to the same extreme conditions, only degradation of the electron density distribution is observed.
View Article and Find Full Text PDFWe examined the high pressure behavior of stannous oxalate via Raman and X-ray absorption spectroscopy (XAS) inside a diamond anvil cell. Phase transitions were observed to occur near 2.6 and 15 GPa which were reversible upon decompression to ambient conditions.
View Article and Find Full Text PDFThe response of solids to X-ray irradiation is not well understood in part because the interactions between X-rays and molecules in solids depend on the intra- and/or intermolecular electronic properties of the material. Our previous work demonstrated that X-ray induced damage of certain ionic salts depends on the irradiating photon energy, especially when irradiated with photons of energy near the cation's K-edge. To advance understanding of the cationic dependence of X-ray photochemistry, we present studies of X-ray induced damage of barium nitrate and strontium nitrate.
View Article and Find Full Text PDFX-ray induced damage has been known for decades and has largely been viewed as a tremendous nuisance. We, on the other hand, harness the highly ionizing and penetrating properties of hard X-rays to initiate novel decomposition and synthetic chemistry. Here, we show that powdered cesium oxalate monohydrate pressurized to ≤0.
View Article and Find Full Text PDFWe report measurements of the X-ray-induced decomposition of crystalline strontium oxalate (SrCO) as a function of energy and high pressure in two separate experiments. SrCO at ambient conditions was irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 28 keV. A broad resonance of the decomposition yield was observed with a clear maximum when irradiating with ∼20 keV X-rays and ambient pressure.
View Article and Find Full Text PDFSpin-crossover (SCO) is generally regarded as a spectacular molecular magnetism in 3d-3d metal complexes and holds great promise for various applications such as memory, displays, and sensors. In particular, SCO materials can be multifunctional when a classical light- or temperature-induced SCO occurs along with other cooperative structural and/or electrical transport alterations. However, such a cooperative SCO has rarely been observed in condensed matter under hydrostatic pressure (an alternative external stimulus to light or temperature), probably due to the lack of synergy between metal neighbors under compression.
View Article and Find Full Text PDFMaterials with an abrupt volume collapse of more than 20 % during a pressure-induced phase transition are rarely reported. In such an intriguing phenomenon, the lattice may be coupled with dramatic changes of orbital and/or the spin-state of the transition metal. A combined in situ crystallography and electron spin-state study to probe the mechanism of the pressure-driven lattice collapse in MnS and MnSe is presented.
View Article and Find Full Text PDFPressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets.
View Article and Find Full Text PDFWe report the results from three high pressure experiments on hexafluorobenzene (C6F6). In the first experiment, Raman spectra were recorded up to 34.4 GPa.
View Article and Find Full Text PDFWe have successfully created a segregated mixture of hydrogen and oxygen at high pressure in a diamond anvil cell using hard x-ray photochemistry. A keyhole (two holes connected by an opening) sample chamber was created in a metallic gasket to support two segregated powders of ammonia borane and potassium perchlorate, respectively, in each hole at a pressure of ~5.0 GPa.
View Article and Find Full Text PDFWe have successfully loaded molecular fluorine into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of perfluorohexane (C6F14). "White" x-ray radiation from the Advanced Photon Source was used to initiate the chemical decomposition of C6F14, which resulted in the in situ production of F2 as verified via Raman spectroscopy. Due to the toxic nature of fluorine, this method will offer significant advantages in the ability to easily load a relatively nontoxic and inert substance into a chamber (such as a diamond anvil cell) that, when sealed with other reactants and irradiate with hard x-rays (>7 keV), releases highly reactive and toxic fluorine into the sample/reaction chamber to enable novel chemical synthesis under isolated and/or extreme conditions.
View Article and Find Full Text PDFWe report on three experiments on carbon tetrachloride subjected to extreme conditions. In the first experiment, Raman spectra of CCl4 were acquired up to 28 GPa. Evidence was observed for at least two new phases of CCl4 above 14 GPa (phase VI) and above 22 GPa (phase VII).
View Article and Find Full Text PDFWe report the first measurements of the X-ray induced decomposition of KClO3 as a function of energy in two experiments. KClO3 was pressurized to 3.5 GPa and irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 35 keV in 5 keV increments.
View Article and Find Full Text PDFThe structural phase stability of 1,1-diamino-2,2-dinitroethylene (FOX-7) has been studied up to 10 GPa through isothermal compression at 100 °C and 200 °C using synchrotron mid- and far-infrared spectroscopy. During isothermal compression at 100 °C changes are observed in vibrational spectra with increase in pressure that are indicative of significant distortion to monoclinic α phase or a possible structural transformation to a high pressure α(') phase at 2.2 GPa and α(") phase at 6.
View Article and Find Full Text PDFCharge transfer in cobalt oxide Co(3)O(4) in the spinel structure is evidenced by experimental results using x-ray diffraction (XRD), x-ray absorption near edge structure (XANES) spectroscopy, and Raman scattering at high pressures up to 42.1, 24.6 and 35.
View Article and Find Full Text PDFWe have successfully loaded H(2) into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of NH(3)BH(3). In a second set of studies, radiation-assisted release of O(2) from KCLO(3), H(2) release from NH(3)BH(3), and reaction of these gases in a mixture of the reactants to form liquid water using x-rays at ambient conditions was observed. Similar observations were made using a KCLO(3) and NaBH(4) mixture.
View Article and Find Full Text PDFWe have developed and demonstrated a novel method to load oxygen in a sealed diamond anvil cell via the x-ray induced decomposition of potassium chlorate. By irradiating a pressurized sample of an oxidizer (KClO(3)) with either monochromatic or white beam x-rays from the Advanced Photon Source at ambient temperature and variable pressure, we succeeded in creating a localized region of molecular oxygen surrounded by unreacted sample which was confirmed via Raman spectroscopy. We anticipate that this technique will be useful in loading even more challenging, difficult-to-load gases such as hydrogen and also to load multiple gases.
View Article and Find Full Text PDFSynchrotron infrared measurements of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) have been performed in the far-IR and mid-IR spectral regions up to approximately 30 and approximately 40 GPa, respectively. For the far-IR experiment, no pressurizing medium was used, whereas KBr was utilized as a pressurizing medium for the mid-IR experiment. For both experiments, pressure was cycled and IR spectra were recorded at various pressures to ascertain sample survival.
View Article and Find Full Text PDFThe behavior of cyclopentane with pressure has been investigated to 21.5 GPa using Raman spectroscopy. Various phases were observed with pressure which included liquid, two plastic, and one true crystalline phases of cyclopentane during compression and decompression sequences.
View Article and Find Full Text PDFHigh-pressure studies of 1,3,5,7-cyclooctatetraene have been performed by using Raman spectroscopy up to 16 GPa and compared with complementary density functional calculations. Angular-dispersive X-ray diffraction studies were also performed in the solid state at elevated pressure. The lattice constants of solid 1,3,5,7-cyclooctatetraene obtained from the X-ray diffraction pattern taken at 3.
View Article and Find Full Text PDFWe conducted a series of experiments investigating decomposition of secondary explosives PETN and TATB at varying static pressures and temperatures using synchrotron radiation. As seen in our earlier work, the decomposition rate of TATB at ambient temperature slows systematically with increasing pressure up to at least 26 GPa but varies little with pressure in PETN at ambient temperature up to 15.7 GPa, yielding important information pertaining to the activation complex volume in both cases.
View Article and Find Full Text PDFWe have used X-ray Raman spectroscopy (XRS) to study benzene up to approximately 20 GPa in a diamond anvil cell at ambient temperature. The experiments were performed at the High-Pressure Collaborative Access Team's 16 ID-D undulator beamline at the Advanced Photon Source. Scanned monochromatic X-rays near 10 keV were used to probe the carbon X-ray edge near 284 eV via inelastic scattering.
View Article and Find Full Text PDFDetermination of the lattice dynamics of Sn at high pressure has represented a major experimental challenge and eluded previous attempts. Here we report the first successful measurement of the phonon density of states of Sn at high pressure to 64 GPa using nuclear resonant inelastic x-ray scattering. We also present density functional theory calculations that are in excellent agreement with the measured data.
View Article and Find Full Text PDFWe present data from two room temperature synchrotron X-ray powder diffraction studies of cyclohexane up to approximately 40 and approximately 20 GPa. In the first experiment, pressure cycling was employed wherein pressure was varied up to approximately 16 GPa, reduced to 3.5 GPa, and then raised again to 40 GPa.
View Article and Find Full Text PDF