Publications by authors named "Michael Pranpat"

Human enhancer of zeste 2 (EZH2) protein belongs to the multiprotein polycomb repressive complex 2, which also includes suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). The polycomb repressive complex 2 complex possesses histone methyltransferase activity mediated by the Su(var)3-9, enhancer of zeste, and trithorax domain of EZH2, which methylates histone H3 on lysine (K)-27 (H3K27). In the present studies, we determined that treatment with the hydroxamate histone deacetylase inhibitor LBH589 or LAQ824 depleted the protein levels of EZH2, SUZ12, and EED in the cultured (K562, U937, and HL-60) and primary human acute leukemia cells.

View Article and Find Full Text PDF

Purpose: We determined the effects of vorinostat [suberoylanilide hydroxamic acid (SAHA)] and/or dasatinib, a dual Abl/Src kinase (tyrosine kinase) inhibitor, on the cultured human (K562 and LAMA-84) or primary chronic myelogenous leukemia (CML) cells, as well as on the murine pro-B BaF3 cells with ectopic expression of the unmutated and kinase domain-mutant forms of Bcr-Abl.

Experimental Design: Following exposure to dasatinib and/or vorinostat, apoptosis, loss of clonogenic survival, as well as the activity and levels of Bcr-Abl and its downstream signaling proteins were determined.

Results: Treatment with dasatinib attenuated the levels of autophosphorylated Bcr-Abl, p-CrkL, phospho-signal transducer and activator of transcription 5 (p-STAT5), p-c-Src, and p-Lyn; inhibited the activity of Lyn and c-Src; and induced apoptosis of the cultured CML cells.

View Article and Find Full Text PDF

AMN107 (Novartis Pharmaceuticals, Basel, Switzerland) has potent in vitro and in vivo activity against the unmutated and most common mutant forms of Bcr-Abl. Treatment with the histone deacetylase inhibitor LBH589 (Novartis) depletes Bcr-Abl levels. We determined the effects of AMN107 and/or LBH589 in Bcr-Abl-expressing human K562 and LAMA-84 cells, as well as in primary chronic myelogenous leukemia (CML) cells.

View Article and Find Full Text PDF
Article Synopsis
  • 17-AAG inhibits the interaction between hsp90 and HSF-1, leading to increased levels of hsp70, which protects cells from apoptosis by inhibiting crucial pro-apoptotic factors.
  • Ectopic expression of hsp70 in HL-60 cells and high endogenous levels in K562 cells confer resistance to apoptosis induced by 17-AAG, primarily by binding to and modifying the behavior of Bax.
  • Reducing hsp70 levels using siRNA makes K562 cells more sensitive to 17-AAG-induced apoptosis, suggesting targeting hsp70 could enhance the drug's effectiveness against leukemia.
View Article and Find Full Text PDF

Purpose: We determined the effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on hsp90 and its client proteins Her-2, AKT, and c-Raf, as well as evaluated the cytotoxic effects of co-treatment of SAHA with trastuzumab or docetaxel in human breast cancer BT-474 and SKBR-3 cells containing amplification of Her-2.

Experimental Design: The cells were treated with SAHA (1.0-5.

View Article and Find Full Text PDF

The hydroxamic acid (HAA) analogue pan-histone deacetylase (HDAC) inhibitors (HDIs) LAQ824 and LBH589 have been shown to induce acetylation and inhibit the ATP binding and chaperone function of heat shock protein (HSP) 90. This promotes the polyubiquitylation and degradation of the pro-growth and pro-survival client proteins Bcr-Abl, mutant FLT-3, c-Raf, and AKT in human leukemia cells. HDAC6 is a member of the class IIB HDACs.

View Article and Find Full Text PDF