Publications by authors named "Michael Poling"

Phosphate (Pi), an essential macronutrient required for growth and development of plants, is often limiting in soils. Pi deficiency modulates the expression of Pi starvation-responsive (PSR) genes including transcription factors (TFs). Here, we elucidated the role of the MYB-related TF HYPERSENSITIVITY TO LOW PHOSPHATE-ELICITED PRIMARY ROOT SHORTENING1 HOMOLOG2 (HHO2, At1g68670) in regulating Pi acquisition and signaling in Arabidopsis thaliana HHO2 was specifically and significantly induced in different tissues in response to Pi deprivation.

View Article and Find Full Text PDF

Phosphorus (P) remobilization in plants is required for continuous growth and development. The Arabidopsis (Arabidopsis thaliana) inorganic phosphate (Pi) transporter Pht1;5 has been implicated in mobilizing stored Pi out of older leaves. In this study, we used a reverse genetics approach to study the role of Pht1;5 in Pi homeostasis.

View Article and Find Full Text PDF

Phosphate (Pi) availability is a major constraint to plant growth. Consequently, plants have evolved complex adaptations to tolerate low Pi conditions. Numerous genes implicated in these adaptations have been identified, but their chromatin-level regulation has not been investigated.

View Article and Find Full Text PDF

Low inorganic phosphate (Pi) availability triggers an array of spatiotemporal adaptive responses in Arabidopsis (Arabidopsis thaliana). There are several reports on the effects of Pi deprivation on the root system that have been attributed to different growth conditions and/or inherent genetic variability. Here we show that the gelling agents, largely treated as inert components, significantly affect morphophysiological and molecular responses of the seedlings to deficiencies of Pi and other nutrients.

View Article and Find Full Text PDF

Phosphorus, one of the essential elements for plants, is often a limiting nutrient in soils. Low phosphate (Pi) availability induces sugar-dependent systemic expression of genes and modulates the root system architecture (RSA). Here, we present the differential effects of sucrose (Suc) and auxin on the Pi deficiency responses of the primary and lateral roots of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

The cDNA for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Arabidopsis encodes a polypeptide with an amino-terminal signal sequence for plastid import. A cDNA fragment encoding the processed form of the enzyme was expressed in Escherichia coli. The resulting protein was purified to electrophoretic homogeneity.

View Article and Find Full Text PDF