We describe a method, termed cryoAPEX, which couples chemical fixation and high-pressure freezing of cells with peroxidase tagging (APEX) to allow precise localization of membrane proteins in the context of a well-preserved subcellular membrane architecture. Further, cryoAPEX is compatible with electron tomography. As an example, we apply cryoAPEX to obtain a high-resolution three-dimensional contextual map of the human FIC (filamentation induced by cAMP) protein, HYPE (also known as FICD).
View Article and Find Full Text PDFGeneration of iPS cells from mouse embryonic fibroblasts (MEF) was achieved using a BacMam transduction system containing a polycistronic plasmid expression vector for coincident and optimized expression of four defined reprogramming transcription factors. The sequences for Oct4, Klf4, Sox2 and c-Myc, were cloned as a fusion gene (OKSM) in a single open reading frame (ORF) via self-cleaving 2A peptides and expressed under the control of the CAG promoter. The transduction efficiency of primary MEF cells with BacMam particles carrying CAG-directed Venus reporter gene is 64-98%.
View Article and Find Full Text PDFSrc family kinases (SFK) are critical for initiating and regulating the response of mast cells activated by engagement of the high-affinity IgE receptor, FcepsilonRI. Lyn is the predominant SFK in mast cells and has been ascribed both positive and negative roles in regulating mast cell activation. We analyzed the mast cell phenotype of WeeB, a recently described mouse mutant that expresses a Lyn protein with profoundly reduced catalytic activity.
View Article and Find Full Text PDFAs a naturally occurring nanocapsule abundantly expressed in nearly all-eukaryotic cells, the barrel-shaped vault particle is perhaps an ideal structure to engineer for targeting to specific cell types. Recombinant vault particles self-assemble from 96 copies of the major vault protein (MVP), have dimensions of 72.5 x 41 nm, and have a hollow interior large enough to encapsulate hundreds of proteins.
View Article and Find Full Text PDFVaults are 13 million Da ribonucleoprotein particles with a highly conserved structure. Expression and assembly by multimerization of an estimated 96 copies of a single protein, termed the major vault protein (MVP), is sufficient to form the minimal structure and entire exterior shell of the barrel-shaped vault particle. Multiple copies of two additional proteins, VPARP and TEP1, and a small untranslated vault RNA are also associated with vaults.
View Article and Find Full Text PDFTEP1 is a protein component of two ribonucleoprotein complexes: vaults and telomerase. The vault-associated small RNA, termed vault RNA (VR), is dependent upon TEP1 for its stable association with vaults, while the association of telomerase RNA with the telomerase complex is independent of TEP1. Both of these small RNAs have been shown to interact with amino acids 1-871 of TEP1 in an indirect yeast three-hybrid assay.
View Article and Find Full Text PDFVault RNA (vRNA) genes have been cloned from several vertebrates including rat, mouse, and humans. Their copy numbers vary, as does the length of the encoded RNA. We have determined that the mouse genome contains two vRNA genes; one is expressed the other is a pseudogene.
View Article and Find Full Text PDFVaults are highly conserved ubiquitous ribonucleoprotein particles with an undefined function. Three protein species (p240/TEP1, p193/VPARP, and p100/MVP) and a small RNA comprise the 13-MDa vault particle. The expression of the unique 100-kDa major vault protein is sufficient to form the basic vault structure.
View Article and Find Full Text PDF