Publications by authors named "Michael Pieper"

Article Synopsis
  • * In experiments with mice, SGLT2 knockout mice showed only mild heart dysfunction, while EMPA significantly improved heart function and reduced fibrosis, edema, and oxidative stress in both normal and SGLT2 knockout mice.
  • * The study suggests that EMPA's protective effects come from its interaction with the sodium hydrogen exchanger 1 (NHE1) and nitric oxide (NO) pathways rather than through SGLT2 inhibition, highlighting the importance of targeting NHE1 for heart failure treatment. *
View Article and Find Full Text PDF

Key Points: Linagliptin reduces kidney function decline and extends lifespan in Alport syndrome mice. Inhibiting the generation of glucose metabolites could serve as a potential therapeutic strategy for the treatment of Alport syndrome.

Background: We previously demonstrated that empagliflozin (Empa), a sodium-glucose cotransporter-2 inhibitor, reduces intrarenal lipid accumulation and slows kidney function decline in experimental Alport syndrome (AS).

View Article and Find Full Text PDF
Article Synopsis
  • Atrial fibrillation (AF) is linked to heart issues and involves changes in heart tissue; this study explores how activated factor X (FXa) impacts this process in atrial endothelial cells and human heart tissues.
  • The researchers used cells from pig hearts and human surgical samples, testing for various proteins, gene expressions, and signs of stress and fibrosis in response to FXa.
  • Findings showed that FXa boosts harmful responses like oxidative stress and inflammation in atrial cells while reducing protective factors, and these effects can be blocked by specific inhibitors targeting FXa.
View Article and Find Full Text PDF

Aim: Sodium glucose co-transporter-2 (SGLT2) inhibitors stimulate renal excretion of sodium and glucose and exert renal protective effects in patients with (non-)diabetic chronic kidney disease (CKD) and may as well protect against acute kidney injury (AKI). The mechanism behind this kidney protective effect remains unclear. Juxtaglomerular cells of renin lineage (CoRL) have been demonstrated to function as progenitors for multiple adult glomerular cell types in kidney disease.

View Article and Find Full Text PDF

Background: COVID-19 is associated with an increased risk of cardiovascular complications. Although cytokines have a predominant role in endothelium damage, the precise molecular mechanisms are far from being elucidated.

Objectives: The present study hypothesized that inflammation in patients with COVID-19 contributes to endothelial dysfunction through redox-sensitive SGLT2 overexpression and investigated the protective effect of SGLT2 inhibition by empagliflozin.

View Article and Find Full Text PDF

Background: SGLT2i (sodium-glucose cotransporter-2 inhibitors) improve clinical outcomes in patients with heart failure, but the mechanisms of action are not completely understood. SGLT2i increases circulating levels of ketone bodies, which has been demonstrated to enhance myocardial energetics and induce reverse ventricular remodeling. However, the role of SGLT2i or ketone bodies on myocardial ischemia reperfusion injury remains in the dark.

View Article and Find Full Text PDF

Empagliflozin, a sodium-glucose co-transporter 2 inhibitor developed, has been shown to reduce cardiovascular events in patients with type 2 diabetes and established cardiovascular disease. Several studies have suggested that empagliflozin improves the cardiac energy state which is a partial cause of its potency. However, the detailed mechanism remains unclear.

View Article and Find Full Text PDF

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice.

View Article and Find Full Text PDF

Treatments with sodium-glucose 2 cotransporter inhibitors (SGLT2i) or endothelin receptor antagonists (ERA) have shown cardiorenal protective effects. The present study aimed to evaluate the cardiorenal beneficial effects of the combination of SGLT2i and ERA on top of renin-angiotensin system (RAS) blockade. Type 2 diabetic mice (db/db) were treated with different combinations of an SGLT2i (empagliflozin), an ERA (atrasentan), and an angiotensin-converting enzyme inhibitor (ramipril) for 8 weeks.

View Article and Find Full Text PDF

Background: Airway inflammation is a key feature of chronic obstructive pulmonary disease (COPD) and inhaled corticosteroids (ICS) remain the main treatment for airway inflammation. Studies have noted the increased efficacy of ICS and long-acting beta 2 agonist (LABA) combination therapy in controlling exacerbations and improving airway inflammation than either monotherapy. Further studies have suggested that LABAs may have inherent anti-inflammatory potential, but this has not been well-studied.

View Article and Find Full Text PDF
Article Synopsis
  • SGLT2 inhibitors (SGLT2i), like dapagliflozin and empagliflozin, are diabetes medications that help lower blood sugar by increasing glucose in urine and may influence hormone levels, but their exact effects on insulin and glucagon secretion are unclear.
  • The study assessed the effects of SGLT2i on glucose and hormone levels in mice and investigated their action on islet cells using various research techniques, including mRNA analysis and immunodetection.
  • Findings showed that SGLT2i increased the plasma glucagon/insulin ratio in fasting mice but did not have a direct effect on insulin and glucagon secretion in isolated islets or change glucagon gene expression
View Article and Find Full Text PDF

Background And Purpose: The bronchodilator tiotropium binds not only to its main binding site on the M muscarinic receptor but also to an allosteric site. Here, we have investigated the functional relevance of this allosteric binding and the potential contribution of this behaviour to interactions with long-acting β-adrenoceptor agonists, as combination therapy with anticholinergic agents and β-adrenoceptor agonists improves lung function in chronic obstructive pulmonary disease.

Experimental Approach: ACh, tiotropium, and atropine binding to M receptors were modelled using molecular dynamics simulations.

View Article and Find Full Text PDF

Background: Asthmatics that are exposed to inhaled pollutants such as cigarette smoke (CS) have increased symptom severity. Approximately 25% of adult asthmatics are thought to be active smokers and many sufferers, especially in the third world, are exposed to high levels of inhaled pollutants. The mechanism by which CS or other airborne pollutants alter the disease phenotype and the effectiveness of treatment in asthma is not known.

View Article and Find Full Text PDF

Introduction: Acute exposure to organic dust (OD) in pig barns induces intense airway inflammation with neutrophilia and hyperresponsiveness. This reaction is likely associated with increased cholinergic activity. Therefore, the involvement of cholinergic mechanisms in the reaction to acute exposure of OD was investigated in mice using the long-acting muscarinic antagonist tiotropium.

View Article and Find Full Text PDF

Acetylcholine (ACh), synthesized by Choline Acetyl-Transferase (ChAT), exerts its physiological effects via mAChRM3 in epithelial cells. We hypothesized that cigarette smoke affects ChAT, ACh, and mAChRM3 expression in the airways from COPD patients promoting airway disease. ChAT, ACh, and mAChRM3 were assessed: "ex vivo" in the epithelium from central and distal airways of COPD patients, Healthy Smoker (S) and Healthy Subjects (C), and "in vitro" in bronchial epithelial cells stimulated with cigarette smoke extract (CSE).

View Article and Find Full Text PDF

Introduction: Resistive breathing (RB), a hallmark of obstructive airway diseases, is characterized by strenuous contractions of the inspiratory muscles that impose increased mechanical stress on the lung. RB is shown to induce pulmonary inflammation in previous healthy animals. Tiotropium bromide, an anticholinergic bronchodilator, is also shown to exert anti-inflammatory effects.

View Article and Find Full Text PDF

One of the major goals of asthma therapy is to maintain asthma control and prevent acute exacerbations. Long-acting bronchodilators are regularly used for the treatment of asthma patients and in clinical studies the anti-cholinergic tiotropium has recently been shown to reduce exacerbations in patients with asthma. So far it is unclear how tiotropium exerts this effect.

View Article and Find Full Text PDF

IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A.

View Article and Find Full Text PDF

Background: Exacerbation frequency is related to disease progression, quality of life, and prognosis in COPD. Earlier diagnosis, along with interventions aimed at preventing exacerbations and delaying progression, may help reduce the global burden of disease. Long-acting inhaled bronchodilators are effective at maintaining symptom relief and are recommended as first-choice therapy for more symptomatic patients and those at risk of exacerbation.

View Article and Find Full Text PDF

Aims: IL-17A plays a key role in the persistence of airway inflammation, oxidative stress, and reduction of steroid-sensitivity in COPD. We studied the effect of IL-17A on chromatin remodeling and IL-8 production.

Main Methods: We measured the levels of IL-8 and IL-17A in induced sputum supernatants (ISS) from healthy controls (HCs), healthy smokers (HSs), and COPD patients by enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Cigarette smoke extract (CSE) affects the expression of Choline Acetyl-Transferase (ChAT), muscarinic acetylcholine receptors, and mucin production in bronchial epithelial cells. Mucin 5AC (MUC5AC), muscarinic acetylcholine receptor M3, ChAT expression, acetylcholine levels and acetylcholine binding were measured in a human pulmonary mucoepidermoid carcinoma cell line (H292) stimulated with CSE. We performed ChAT/RNA interference experiments in H292 cells stimulated with CSE to study the role of ChAT/acetylcholine in MUC5AC production.

View Article and Find Full Text PDF

Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder.

View Article and Find Full Text PDF