Bacterivorous nematodes are important grazers in the soil micro-food web. Their trophic regulation shapes the composition and ecosystem services of the soil microbiome, but the underlying population dynamics of bacteria and archaea are poorly understood. We followed soil respiration and 221 dominant bacterial and archaeal 16S rRNA gene amplicon sequencing variants (ASVs) in response to top-down control by a common bacterivorous soil nematode, Acrobeloides buetschlii, bottom-up control by maize litter amendment and their combination over 32 days.
View Article and Find Full Text PDFBackground: Sulfate-reducing bacteria (SRB) are frequently encountered in anoxic-to-oxic transition zones, where they are transiently exposed to microoxic or even oxic conditions on a regular basis. This can be marine tidal sediments, microbial mats, and freshwater wetlands like peatlands. In the latter, a cryptic but highly active sulfur cycle supports their anaerobic activity.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
August 2024
Two new strains JP48 and JP55 affiliated with the acidobacterial class have been isolated from fen soil sampled in the Fichtelgebirge Mountains near Bayreuth, Germany. Both strains were Gram-stain-negative, non-motile, non-spore-forming rods that divide by binary fission, segregate exopolysaccharide-like material and form capsules. Strains JP48 and JP55 grew at 4-36 °C (optimum at 27 °C), pH 3.
View Article and Find Full Text PDFThe archaeal isolate J.3.6.
View Article and Find Full Text PDFThe rewetting of formerly drained peatlands can help to counteract climate change through the reduction of CO emissions. However, this can lead to resuming CH emissions due to changes in the microbiome, favoring CH-producing archaea. How plants, hydrology and microbiomes interact as ultimate determinants of CH dynamics is still poorly understood.
View Article and Find Full Text PDFSulfate-reducing microorganisms represent a globally important link between the sulfur and carbon cycles. Recent metagenomic surveys expanded the diversity of microorganisms putatively involved in sulfate reduction underscoring our incomplete understanding of this functional guild. Here, we use genome-centric metatranscriptomics to study the energy metabolism of Acidobacteriota that carry genes for dissimilation of sulfur compounds in a long-term continuous culture running under alternating anoxic and oxic conditions.
View Article and Find Full Text PDFSulfate/sulfite-reducing microorganisms (SRM) are ubiquitous in nature, driving the global sulfur cycle. A hallmark of SRM is the dissimilatory sulfite reductase encoded by the genes dsrAB. Based on analysis of 950 mainly metagenome-derived dsrAB-carrying genomes, we redefine the global diversity of microorganisms with the potential for dissimilatory sulfate/sulfite reduction and uncover genetic repertoires that challenge earlier generalizations regarding their mode of energy metabolism.
View Article and Find Full Text PDFA novel sulphur-reducing bacterium was isolated from a pyrite-forming enrichment culture inoculated with sewage sludge from a wastewater treatment plant. Based on phylogenetic data, strain J.5.
View Article and Find Full Text PDFAmmonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems.
View Article and Find Full Text PDFWe present MediaDive (https://mediadive.dsmz.de), a comprehensive and expert-curated cultivation media database, which comprises recipes, instructions and molecular compositions of >3200 standardized cultivation media for >40 000 microbial strains from all domains of life.
View Article and Find Full Text PDFDeep oligotrophic lakes sustain large populations of the class Nitrososphaeria (Thaumarchaeota) in their hypolimnion. They are thought to be the key ammonia oxidizers in this habitat, but their impact on N-cycling in lakes has rarely been quantified. We followed this archaeal population in one of Europe's largest lakes, Lake Constance, for two consecutive years using metagenomics and metatranscriptomics combined with stable isotope-based activity measurements.
View Article and Find Full Text PDFTwo strains of sulfate-reducing bacteria (J.5.4.
View Article and Find Full Text PDFIt is generally accepted that plants locally influence the composition and activity of their rhizosphere microbiome, and that rhizosphere community assembly further involves a hierarchy of constraints with varying strengths across spatial and temporal scales. However, our knowledge of rhizosphere microbiomes is largely based on single-location and time-point studies. Consequently, it remains difficult to predict patterns at large landscape scales, and we lack a clear understanding of how the rhizosphere microbiome forms and is maintained by drivers beyond the influence of the plant.
View Article and Find Full Text PDFAmmonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.
View Article and Find Full Text PDFMicrobiol Resour Announc
July 2019
sp. strain Sb-LF was isolated from an acidic peatland in Bavaria, Germany. Here, we report the draft genome sequence of the sulfate-reducing and lactate-utilizing strain Sb-LF.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2019
Chitin is massively produced by freshwater plankton species as a structural element of their exoskeleton or cell wall. At the same time, chitin does not accumulate in the predominantly anoxic sediments, underlining its importance as carbon and nitrogen sources for sedimentary microorganisms. We studied chitin degradation in littoral sediment of Lake Constance, Central Europe's third largest lake.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
The exergonic reaction of FeS with HS to form FeS (pyrite) and H was postulated to have operated as an early form of energy metabolism on primordial Earth. Since the Archean, sedimentary pyrite formation has played a major role in the global iron and sulfur cycles, with direct impact on the redox chemistry of the atmosphere. However, the mechanism of sedimentary pyrite formation is still being debated.
View Article and Find Full Text PDFActive sulfate-reducing microorganisms (SRM) in freshwater sediments are under-examined, despite the well-documented cryptic sulfur cycle occurring in these low-sulfate habitats. In Lake Constance sediment, sulfate reduction rates of up to 1,800 nmol cm day were previously measured. To characterize its SRM community, we used a tripartite amplicon sequencing approach based on 16S rRNA genes, 16S rRNA, and transcripts (encoding the beta subunit of dissimilatory sulfite reductase).
View Article and Find Full Text PDFMicrobial diversity in the environment is mainly concealed within the rare biosphere (all species with <0.1% relative abundance). While dormancy explains a low-abundance state very well, the mechanisms leading to rare but active microorganisms remain elusive.
View Article and Find Full Text PDFSulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes).
View Article and Find Full Text PDFA critical step in the biogeochemical cycle of sulfur on Earth is microbial sulfate reduction, yet organisms from relatively few lineages have been implicated in this process. Previous studies using functional marker genes have detected abundant, novel dissimilatory sulfite reductases (DsrAB) that could confer the capacity for microbial sulfite/sulfate reduction but were not affiliated with known organisms. Thus, the identity of a significant fraction of sulfate/sulfite-reducing microbes has remained elusive.
View Article and Find Full Text PDFspp. distantly related to thermophilic, sulfate-reducing species are regularly observed in environmental surveys of anoxic marine and freshwater habitats. Here we present a metaproteogenomic analysis of bacterium Nbg-4 as a representative of this clade.
View Article and Find Full Text PDFObligate acidophilic members of the thaumarchaeotal genus Candidatus Nitrosotalea play an important role in nitrification in acidic soils, but their evolutionary and physiological adaptations to acidic environments are still poorly understood, with only a single member of this genus (Ca. N. devanaterra) having its genome sequenced.
View Article and Find Full Text PDF