Purpose: To develop and test a deep learning (DL) algorithm for detecting referable glaucoma in the Los Angeles County (LAC) Department of Health Services (DHS) teleretinal screening program.
Methods: Fundus photographs and patient-level labels of referable glaucoma (defined as cup-to-disc ratio [CDR] ≥ 0.6) provided by 21 trained optometrist graders were obtained from the LAC DHS teleretinal screening program.
Purpose: To compare the diagnostic accuracy and explainability of a Vision Transformer deep learning technique, Data-efficient image Transformer (DeiT), and ResNet-50, trained on fundus photographs from the Ocular Hypertension Treatment Study (OHTS) to detect primary open-angle glaucoma (POAG) and identify the salient areas of the photographs most important for each model's decision-making process.
Design: Evaluation of a diagnostic technology.
Subjects Participants And Controls: Overall 66 715 photographs from 1636 OHTS participants and an additional 5 external datasets of 16 137 photographs of healthy and glaucoma eyes.
IEEE J Biomed Health Inform
July 2021
In this study, we propose a post-hoc explainability framework for deep learning models applied to quasi-periodic biomedical time-series classification. As a case study, we focus on the problem of atrial fibrillation (AF) detection from electrocardiography signals, which has strong clinical relevance. Starting from a state-of-the-art pretrained model, we tackle the problem from two different perspectives: global and local explanation.
View Article and Find Full Text PDFMobile and wearable devices are capable of quantifying user behaviors based on their contextual sensor data. However, few indexing and annotation mechanisms are available, due to difficulties inherent in raw multivariate data types and the relative sparsity of sensor data. These issues have slowed the development of higher level human-centric searching and querying mechanisms.
View Article and Find Full Text PDFAs the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches.
View Article and Find Full Text PDF