Publications by authors named "Michael Paulus"

Aims: Data on the clinical profiles of patients with transthyretin amyloidosis cardiomyopathy (ATTR-CM) in the post-approval era of tafamidis 61 mg are lacking. Study aims were characterization of contemporary ATTR-CM patients, analysis of potential eligibility for the 'Transthyretin Amyloidosis Cardiomyopathy Clinical Trial' (ATTR-ACT) and identification of factors associated with the decision on tafamidis 61 mg treatment.

Methods And Results: This retrospective study analysed ATTR-CM patients seen at eight University Hospitals in the first year after approval of tafamidis 61 mg for ATTR-CM in Germany (April 2020 to March 2021).

View Article and Find Full Text PDF

Aims: Plasma NT-proBNP is an established marker of heart failure. Previous studies suggested urinary NT-proBNP has potential as marker of chronic heart failure as well. The objective of this study was to compare urinary NT-proBNP to plasma NT-proBNP in a real-life collective of patients with an ICD, especially regarding ICD-therapies.

View Article and Find Full Text PDF

Linear amines, from propylamine to nonylamine, are studied under ambient conditions by X-ray scattering and molecular dynamics simulations of various force field models. The major finding is that the prepeak in alkylamines is about 1 order of magnitude weaker than that in alkanols, hence suggesting much weaker hydrogen bonding-induced clustering of the amine groups than for the hydroxyl groups. Computer simulation studies reveal that the OPLS-UA model reproduces the prepeak, but with larger amplitudes, while the GROMOS-UA and CHARMM-AA force fields show almost no prepeak.

View Article and Find Full Text PDF

The effects and mechanisms of cardiac arrhythmias are still incompletely understood and an important subject of cardiovascular research. A major difficulty for investigating arrhythmias is the lack of appropriate human models. Here, we present a protocol for a translational simulation of different types of arrhythmias using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and electric cell culture pacing.

View Article and Find Full Text PDF

Electric pacing of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) has been increasingly used to simulate cardiac arrhythmias in vitro and to enhance cardiomyocyte maturity. However, the impact of electric pacing on cellular electrophysiology and Ca handling in differentiated hiPSC-CM is less characterized. Here we studied the effects of electric pacing for 24 h or 7 days at a physiological rate of 60 beats/min on cellular electrophysiology and Ca cycling in late-stage, differentiated hiPSC-CM (>90% troponin, >60 days postdifferentiation).

View Article and Find Full Text PDF

We investigated the effect of the NaCl concentration (0.3-2M) on the structure and dynamics of hen egg yolk at room temperature and during thermal gelation at temperatures in the range of 66-90 °C utilizing low-dose x-ray photon correlation spectroscopy in ultra-small angle x-ray scattering geometry. With an increase in the salt concentration, we observe progressive structural and dynamic changes at room temperature, indicating the disruption of yolk components such as yolk-granules and yolk-plasma proteins.

View Article and Find Full Text PDF

Despite a few recent reports on Rashba effects in two-dimensional (2D) Ruddlesden-Popper (RP) hybrid perovskites, the precise role of organic spacer cations in influencing Rashba band splitting remains unclear. Here, using a combination of temperature-dependent two-photon photoluminescence (2PPL) and time-resolved photoluminescence spectroscopy, alongside density functional theory (DFT) calculations, we contribute to significant insights into the Rashba band splitting found for 2D RP hybrid perovskites. The results demonstrate that the polarity of the organic spacer cation is crucial in inducing structural distortions that lead to Rashba-type band splitting.

View Article and Find Full Text PDF

Femtosecond high-intensity laser pulses at intensities surpassing 10 W/cm can generate a diverse range of functional surface nanostructures. Achieving precise control over the production of these functional structures necessitates a thorough understanding of the surface morphology dynamics with nanometer-scale spatial resolution and picosecond-scale temporal resolution. In this study, we show that single XFEL pulses can elucidate structural changes on surfaces induced by laser-generated plasmas using grazing-incidence small-angle X-ray scattering (GISAXS).

View Article and Find Full Text PDF

The functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospholipids and azobenzene amphiphiles.

View Article and Find Full Text PDF

Aqueous -octanol ( = 1, 2, 3, and 4) mixtures from the octanol rich side are studied by X-ray scattering and computer simulation, with a focus on structural changes, particularly in what concerns the hydration of the hydroxyl-group aggregated chain-like structures, under the influence of various branching of the alkyl tails. Previous studies have indicated that hydroxyl-group chain-cluster formation is hindered in proportion to the branching number. Here, water mole fractions up to = 0.

View Article and Find Full Text PDF

High-performance greases typically consist of a base oil and polyurea as a thickener material. To date, few alternatives to polyureas have been investigated. Polyesters could be one such alternative; however, little is known about the gelation of such polyesters because, unlike polyureas, they cannot form hydrogen bonds between the polymer chains.

View Article and Find Full Text PDF

The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation.

View Article and Find Full Text PDF

Controlling the deposition of spin-crossover (SCO) materials constitutes a crucial step for the integration of these bistable molecular systems in electronic devices. Moreover, the influence of functional surfaces, such as 2D materials, can be determinant on the properties of the deposited SCO film. In this work, ultrathin films of the SCO Hofmann-type coordination polymer [Fe(py) {Pt(CN) }] (py = pyridine) onto monolayers of 1T and 2H MoS polytypes are grown.

View Article and Find Full Text PDF

Garnet solid-electrolyte-based Li-metal batteries can be used in energy storage devices with high energy densities and thermal stability. However, the tendency of garnets to form lithium hydroxide and carbonate on the surface in an ambient atmosphere poses significant processing challenges. In this work, the decomposition of surface layers under various gas environments is studied by using two surface-sensitive techniques, near-ambient-pressure X-ray photoelectron spectroscopy and grazing incidence X-ray diffraction.

View Article and Find Full Text PDF

Responsive metal-organic frameworks (MOFs) that display sigmoidal gas sorption isotherms triggered by discrete gas pressure-induced structural transformations are highly promising materials for energy related applications. However, their lack of transportability via continuous flow hinders their application in systems and designs that rely on liquid agents. We herein present examples of responsive liquid systems which exhibit a breathing behaviour and show step-shaped gas sorption isotherms, akin to the distinct oxygen saturation curve of haemoglobin in blood.

View Article and Find Full Text PDF

We use X-ray photon correlation spectroscopy to investigate how structure and dynamics of egg white protein gels are affected by X-ray dose and dose rate. We find that both, changes in structure and beam-induced dynamics, depend on the viscoelastic properties of the gels with soft gels prepared at low temperatures being more sensitive to beam-induced effects. Soft gels can be fluidized by X-ray doses of a few kGy with a crossover from stress relaxation dynamics (Kohlrausch-Williams-Watts exponents [Formula: see text] to 2) to typical dynamical heterogeneous behavior ([Formula: see text]1) while the high temperature egg white gels are radiation-stable up to doses of 15 kGy with [Formula: see text].

View Article and Find Full Text PDF

Purpose: Data derived by cardiac magnetic resonance (CMR) feature tracking suggest that not only left ventricular but also left atrial function is impaired in patients with acute myocarditis. Therefore, we investigated the diagnostic value of speckle tracking echocardiography of the left ventricle and left atrium in patients with acute myocarditis and normal left ventricular ejection fraction (LVEF).

Methods And Results: 30 patients with acute myocarditis confirmed by CMR according to the Lake Louise criteria and 20 healthy controls were analyzed including global longitudinal strain (GLS) and left atrial (LA) strain parameters.

View Article and Find Full Text PDF

Aims: Sleep-disordered breathing (SDB) and its subtype central sleep apnoea (CSA) are highly prevalent in patients with heart failure and associated with worse prognosis. Whereas pharmacological therapy of heart failure has been shown to ameliorate CSA, results from previous studies on the effect of mitral regurgitation therapy on SDB are contradicting. The aim of this study was to assess the impact of transcatheter edge-to-edge mitral valve repair (TEER) on prevalence and severity of CSA.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) can either be a consequence or an underlying mechanism of left ventricular systolic dysfunction. Patients included in the CASTLE-AF (Catheter Ablation vs. Standard Conventional Treatment in Patients With LV Dysfunction and AF) trial who suffered from AF and left ventricular systolic dysfunction benefited from an AF burden <50% after catheter ablation compared with those patients with an AF burden >50%.

View Article and Find Full Text PDF

Background: Recirculation is a common problem in venovenous (VV) extracorporeal membrane oxygenation (ECMO). The aims of this study were to compare recirculation fraction (R) between femoro-jugular and jugulo-femoral VV ECMO configurations, to identify risk factors for recirculation and to assess the impact on hemolysis.

Methods: Patients in the medical intensive care unit (ICU) at the University Medical Center Regensburg, Germany receiving VV ECMO with femoro-jugular, and jugulo-femoral configuration at the ECMO Center Karolinska, Sweden, were included in this non-randomized prospective study.

View Article and Find Full Text PDF

In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films.

View Article and Find Full Text PDF

Tachycardiomyopathy is characterised by reversible left ventricular dysfunction, provoked by rapid ventricular rate. While the knowledge of mitochondria advanced in most cardiomyopathies, mitochondrial functions await elucidation in tachycardiomyopathy. Pacemakers were implanted in 61 rabbits.

View Article and Find Full Text PDF

An X-ray reflectivity study on the interaction of recombinant human resistin (hRes) with fibrillation-prone human islet amyloid polypeptide (hIAPP) at anionic phospholipid Langmuir films as model membranes is presented. Aggregation and amyloid formation of hIAPP is considered the main mechanism of pancreatic β-cell loss in patients with type 2 diabetes mellitus. Resistin shows a chaperone-like ability, but also tends to form aggregates by itself.

View Article and Find Full Text PDF

We present a surface-sensitive X-ray scattering study on the influence of gaseous and aerolized perfluorocarbons (FCs) on zwitterionic and anionic phospholipid Langmuir films, which serve as a simplified model system of lung surfactants. It was found that small gaseous FC molecules like F-propane and F-butane penetrate phospholipid monolayers and accumulate between the alkyl chains and form islands. This clustering process can trigger the formation of lipid crystallites at low initial surface pressures.

View Article and Find Full Text PDF