Publications by authors named "Michael Palucki"

A general method for the enantioselective hydrogenation of protected allylic amine derivatives is described. This procedure relies on the generation of a cationic ruthenium complex with the axially chiral ligand (-)-TMBTP. The utility is highlighted by the highly enantioselective hydrogenation of a diene substrate that can then be elaborated to prepare Telcagepant, a compound currently in Phase III clinical trials.

View Article and Find Full Text PDF

Practical, chromatography-free syntheses of 5-lipoxygenase inhibitor MK-0633 p-toluenesulfonate (1) are described. The first route used an asymmetric zincate addition to ethyl 2,2,2-trifluoropyruvate followed by 1,3,4-oxadiazole formation and reductive amination as key steps. An improved second route features an inexpensive diastereomeric salt resolution of vinyl hydroxy-acid 22 followed by a robust end-game featuring a through-process hydrazide acylation/1,3,4-oxadiazole ring closure/salt formation sequence to afford MK-0633 p-toluenesulfonate (1).

View Article and Find Full Text PDF

A practical large-scale chromatography-free synthesis of EP4 antagonist MF-310, a potential new treatment for chronic inflammation, is presented. The synthetic route provided MF-310 as its sodium salt in 10 steps and 17% overall yield from commercially available pyridine dicarboxylate 7. The key features of this sequence include a unique regioselective reduction of succinimide 2 controlled by the electronic properties of a remote pyridine ring, preparation of cyclopropane carboxylic acid 3 via a Corey-Chaykovsky cyclopropanation, and a short synthesis of sulfonamide 5.

View Article and Find Full Text PDF

An expedient, five step synthesis of caprolactam 1 is reported starting from natural L-homoserine. The key step is a chemoselective reductive cyclization of alpha,beta-unsaturated nitrile 10 mediated by Raney-Co type metals. This hydrogenation is extensively investigated in order to account for the observed product distribution and yields.

View Article and Find Full Text PDF

This paper describes a remarkably efficient process for the preparation of gamma-secretase inhibitor 1. The target is synthesized in only five steps with an overall yield of 58%. The key operation is a highly selective and practical, crystallization-driven transformation for the conversion of a mixture of tertiary benzylic alcohols into the desired sulfide diastereomer with 94:6 dr.

View Article and Find Full Text PDF

A direct and efficient method was developed for the preparation of a variety of substituted acetophenone derivatives from readily available arene precursors and acid chlorides. This method has significant generality and affords access to substitution patterns on aryl rings not directly achievable by Friedel-Crafts chemistry. [reaction: see text].

View Article and Find Full Text PDF

[Structure: see text] An efficient regioselective method for the preparation of structurally diverse imidazopyridinones and benzoimidazolones starting from readily available and economical starting materials is described. High-yielding reductive alkylation of electron-deficient o-haloarylamines followed by treatment with inexpensive N-chlorosulfonyl isocyanate afforded primary ureas in good overall yields. A Pd-catalyzed urea cyclization reaction furnished imidazopyridinones and benzoimidazolones in excellent yields.

View Article and Find Full Text PDF

[Structure: see text] An expedient, catalytic method for the synthesis of diverse azaindoles and indoles, starting from readily available and inexpensive starting materials, is described. Conditions were developed for effective reductive alkylation of electron-deficient o-chloroarylamines, substrates previously viewed as poor partners in this reaction. The derived N-alkylated o-chloroarylamines were elaborated to N-alkylazaindoles and N-alkylindoles via a novel one-pot process comprising copper-free Sonogashira alkynylation and a base-mediated indolization reaction.

View Article and Find Full Text PDF

The palladium-catalyzed formation of Z-olefins from allylic carbonates and a variety of protected dialkyl aminomalonates is reported. The reaction is selective for the Z-isomer, and either acetyl, Boc, or formyl protecting groups are tolerated. The Z-olefin product can be formed regardless of whether the E- or Z-allylic carbonate is used as starting material.

View Article and Find Full Text PDF

[reaction: see text] Herein we demonstrate functionalized enol tosylates to be robust substrates that undergo Suzuki-Miyaura, Sonogashira, and Stille cross-coupling reactions to provide stereodefined trisubstituted unsaturated esters.

View Article and Find Full Text PDF

The asymmetric synthesis of a Merck anti-HIV drug candidate is described. The target molecule contains four stereogenic centers, three of which are located in a highly functionalized cyclopentane unit. The convergent synthesis involves the preparation of two key advanced intermediates: the cyclopentane unit and a substituted pyrazole unit.

View Article and Find Full Text PDF

[Reaction: see text] The stereoselective preparation of (E)- or (Z)-trisubstituted alpha,beta-unsaturated esters in three steps from N-protected glycine is presented. The key step in the synthesis is the highly selective enol tosylation of gamma-amino beta-keto esters. The enol tosylates are stable, crystalline compounds that undergo smooth and effective Suzuki-Miyaura coupling reaction with a variety of aryl boronic acids.

View Article and Find Full Text PDF

The preparation of 3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propan-1-amine 2a and 3-[(7R)-7-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl]propan-1-amine 2b, key intermediates in the synthesis of alpha(V)beta(3) antagonists, is described. The syntheses rely on the efficient double Sonogashira reactions of 2,5-dibromopyridine 3 with acetylenic alcohols 4a/4b and protected propargylamines 10a-e followed by Chichibabin cyclizations of 3,3'-pyridine-2,5-diyldipropan-1-amines 9a/9b.

View Article and Find Full Text PDF

A practical preparation of an alpha(v)beta(3) antagonist is reported. The antagonist consists of three key components, a tetrahydronaphthyridine moiety, a beta-alanine moiety, and a central imidazolidone moiety. The tetrahydronaphthyridine component was prepared using two different methods, both of which relied on variations of the Friedländer reaction to establish the desired regiochemistry.

View Article and Find Full Text PDF

An efficient and practical asymmetric synthesis of (+)-trans-3-hydroxymethyl-4-(3-fluorophenyl)cyclopentanone (1) is described. An asymmetric Mo-catalyzed alkylation reaction was used to establish the first stereocenter and a Cu-catalyzed intramolecular diastereoselective cyclopropanation reaction was used to set the second stereocenter. The last step involved a one-pot ring-opening/deprotection/hydrolysis/decarboxylation sequence that furnished the desired product in good yield.

View Article and Find Full Text PDF

Catalytic asymmetric alkylation reactions of branched racemic carbonates 1a and 1b with sodium dimethyl malonate, promoted by molybdenum and ligand 5, proceed by a kinetic resolution in toluene, THF, tetrahydropyran, i-PrOAc, 1,2-dichloroethane, and MeCN with k(rel) of 7-16. In THF, MeCN, tetrahydropyran, and i-PrOAc using the (S,S)-5 ligand, the fast reacting (S)-carbonate enantiomer provides the branched product with high ee (97-99.5%) and branched/linear selectivity, but the ee erodes as the reaction of the slow-reacting (R)-enantiomer takes place.

View Article and Find Full Text PDF