Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using / ( ) and mice that loss of delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation.
View Article and Find Full Text PDFAmelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e.
View Article and Find Full Text PDFCalcium export is a key function for the enamel organ during all stages of amelogenesis. Expression of a number of ATPase calcium transporting, plasma membrane genes (ATP2B1-4/PMCA1-4), solute carrier SLC8A genes (sodium/calcium exchanger or NCX1-3), and SLC24A gene family members (sodium/potassium/calcium exchanger or NCKX1-6) have been investigated in the developing enamel organ in earlier studies. This paper reviews the calcium export pathways that have been described and adds novel insights to the spatiotemporal expression patterns of PMCA1, PMCA4, and NCKX3 during amelogenesis.
View Article and Find Full Text PDFAmelogenesis features two major developmental stages-secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (, which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation.
View Article and Find Full Text PDFDental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth.
View Article and Find Full Text PDFAmelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis.
View Article and Find Full Text PDFAim: Post-cardiac arrest hypothermic-targeted temperature management (HTTM) improves outcomes in preclinical cardiac arrest studies. However, inadequate understanding of the mechanisms and therapeutic windows remains a barrier to optimization. We tested the hypothesis that combined intra- and post-cardiac arrest HTTM provides a synergistic outcome benefit compared to either strategy alone.
View Article and Find Full Text PDFThe bicarbonate transport activities of Slc26a1, Slc26a6 and Slc26a7 are essential to physiological processes in multiple organs. Although mutations of Slc26a1, Slc26a6 and Slc26a7 have not been linked to any human diseases, disruption of Slc26a1, Slc26a6 or Slc26a7 expression in animals causes severe dysregulation of acid-base balance and disorder of anion homeostasis. Amelogenesis, especially the enamel formation during maturation stage, requires complex pH regulation mechanisms based on ion transport.
View Article and Find Full Text PDFSeveral diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited.
View Article and Find Full Text PDFDental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry.
View Article and Find Full Text PDFThe host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs.
View Article and Find Full Text PDFEnamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase.
View Article and Find Full Text PDFAnat Rec (Hoboken)
August 2015
ClC-7 is a 2Cl(-) /1H(+) -exchanger expressed at late endosomes and lysosomes, as well as the ruffled border of osteoclasts. ClC-7 deficiencies in mice and humans lead to impaired osteoclast function and therefore osteopetrosis. Failure of tooth eruption is also apparent in ClC-7 mutant animals, and this has been attributed to the osteoclast dysfunction and the subsequent defect in alveolar bone resorptive activity surrounding tooth roots.
View Article and Find Full Text PDFBackground: In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis.
View Article and Find Full Text PDFAmeloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells.
View Article and Find Full Text PDFSlc4a4-null mice are a model of proximal renal tubular acidosis (pRTA). Slc4a4 encodes the electrogenic sodium base transporter NBCe1 that is involved in transcellular base transport and pH regulation during amelogenesis. Patients with mutations in the SLC4A4 gene and Slc4a4-null mice present with dysplastic enamel, amongst other pathologies.
View Article and Find Full Text PDFThe sodium pump Na(+)/K(+)-ATPase, expressed in virtually all cells of higher organisms, is involved in establishing a resting membrane potential and in creating a sodium gradient to facilitate a number of membrane-associated transport activities. Na(+)/K(+)-ATPase is an oligomer of α, β, and γ subunits. Four unique genes encode each of the α and β subunits.
View Article and Find Full Text PDFPatients with Axenfeld-Rieger Syndrome (ARS) present various dental abnormalities, including hypodontia, and enamel hypoplasia. ARS is genetically associated with mutations in the PITX2 gene, which encodes one of the earliest transcription factors to initiate tooth development. Thus, Pitx2 has long been considered as an upstream regulator of the transcriptional hierarchy in early tooth development.
View Article and Find Full Text PDFThe modern human face differs from that of our early ancestors in that the facial profile is relatively retracted (orthognathic). This change in facial profile is associated with a characteristic spatial distribution of bone deposition and resorption: growth remodeling. For humans, surface resorption commonly dominates on anteriorly-facing areas of the subnasal region of the maxilla and mandible during development.
View Article and Find Full Text PDFDentin sialophosphoprotein (DSPP) is a large precursor protein that is proteolytically processed into a NH2 -terminal fragment [composed of dentin sialoprotein (DSP) and a proteoglycan form (DSP-PG)] and a COOH-terminal fragment [dentin phosphoprotein (DPP)]. In vitro studies indicate that DPP is a strong initiator and regulator of hydroxyapatite crystal formation and growth, but the role(s) of the NH2 -terminal fragment of DSPP (i.e.
View Article and Find Full Text PDFBMC Res Notes
January 2013
Background: An iron rich layer on the labial surface is characteristic of the enamel of rodent incisors. In order to address a role for iron content in continuously growing incisors during odontogenesis, we studied iron deposition patterns in enamel and dentine using Perls' blue staining and ferritin heavy chain (Fth) immunolocalization. Fth expression is regulated by iron level; therefore its localization can be used as a sensitive indicator for iron deposition.
View Article and Find Full Text PDFMolecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter.
View Article and Find Full Text PDFObjective: Enamel matrix derivative (EMD), is an extract of porcine developing enamel matrix. Its commercialised form Emdogain, is claimed to stimulate periodontal regeneration by recapitulating original developmental processes, although the mechanism remains unclear. Our objective was to investigate interactions between EMD and human periodontal ligament (HPDL) fibroblasts in vitro.
View Article and Find Full Text PDFAims: The cerebellum is among the brain regions most vulnerable to damage caused by cardiac arrest, and cerebellar Purkinje cell loss may contribute to neurologic dysfunction, including post-hypoxic myoclonus. However, it remains unknown whether cerebellar Purkinje cells are protected by post-cardiac arrest therapeutic hypothermia (TH). Therefore, we examined the effect of post-cardiac arrest TH onset and duration on cerebellar Purkinje cell loss.
View Article and Find Full Text PDFTranscellular calcium transport is an essential activity in mineralized tissue formation, including dental hard tissues. In many organ systems, this activity is regulated by membrane-bound sodium/calcium (Na(+)/Ca(2+)) exchangers, which include the NCX and NCKX [sodium/calcium-potassium (Na(+)/Ca(2+)-K(+)) exchanger] proteins. During enamel maturation, when crystals expand in thickness, Ca(2+) requirements vastly increase but exactly how Ca(2+) traffics through ameloblasts remains uncertain.
View Article and Find Full Text PDF