MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project.
View Article and Find Full Text PDFSummary: An ultrafast DNA sequence aligner (Isaac Genome Alignment Software) that takes advantage of high-memory hardware (>48 GB) and variant caller (Isaac Variant Caller) have been developed. We demonstrate that our combined pipeline (Isaac) is four to five times faster than BWA + GATK on equivalent hardware, with comparable accuracy as measured by trio conflict rates and sensitivity. We further show that Isaac is effective in the detection of disease-causing variants and can easily/economically be run on commodity hardware.
View Article and Find Full Text PDFBackground: The evolution of gene expression is a challenging problem in evolutionary biology, for which accurate, well-calibrated measurements and methods are crucial.
Results: We quantified gene expression with whole-transcriptome sequencing in four diploid, prototrophic strains of Saccharomyces species grown under the same condition to investigate the evolution of gene expression. We found that variation in expression is gene-dependent with large variations in each gene's expression between replicates of the same species.
As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers.
View Article and Find Full Text PDFMotivation: Analysis of genomic sequencing data requires efficient, easy-to-use access to alignment results and flexible data management tools (e.g. filtering, merging, sorting, etc.
View Article and Find Full Text PDFGenomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations.
View Article and Find Full Text PDFForward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain.
View Article and Find Full Text PDFPreviously reported applications of the 454 Life Sciences pyrosequencing technology have relied on deep sequence coverage for accurate polymorphism discovery because of frequent insertion and deletion sequence errors. Here we report a new base calling program, Pyrobayes, for pyrosequencing reads. Pyrobayes permits accurate single-nucleotide polymorphism (SNP) calling in resequencing applications, even in shallow read coverage, primarily because it produces more confident base calls than the native base calling program.
View Article and Find Full Text PDF