Publications by authors named "Michael P Strager"

The Appalachian region of the United States has experienced significant growth in the production of natural gas. Developing the infrastructure required to transport this resource to market creates significant disturbances across the landscape, as both well pads and transportation pipelines must be created in this mountainous terrain. Midstream infrastructure, which includes pipeline rights-of-way and associated infrastructure, can cause significant environmental degradation, especially in the form of sedimentation.

View Article and Find Full Text PDF

Unconventional oil and gas (UOG) wells from the Marcellus and Utica shale plays have expanded greatly across the Appalachian region of the United States (US) since the early 2000s. This region is now the single largest natural gas producing area of the US. The local and regional impacts of this industry on the landscape make it critical to understand for future planning efforts.

View Article and Find Full Text PDF

Natural gas production from the Appalachian region has reached record levels, primarily due to the rapid increase in development of unconventional oil and gas (UOG) resources. In 2020, over 65,000 conventional wells reported natural gas production; however, this only represented 5% of the total natural gas produced. The remaining 95% of natural gas production can be attributed to 3,901 UOG wells.

View Article and Find Full Text PDF

The demand for natural gas has led to the development of techniques used to access unconventional oil and natural gas (UOG) resources, due to the novelty of UOG, the potential impacts to freshwater ecosystems are not fully understood. We used a dual pronged approach to study the effects of UOG development on microbial biodiversity and function via a laboratory microcosm experiment and a survey study of streams with and without UOG development within their watersheds. The microcosm experiment simulated stream contamination with produced water, a byproduct of UOG operations, using sediment collected from one high water-quality stream and two low water-quality streams.

View Article and Find Full Text PDF

There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework.

View Article and Find Full Text PDF

Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers.

View Article and Find Full Text PDF

Runoff from watersheds altered by mountaintop mining in the Appalachian region (USA) is known to pollute headwater streams, yet regional-scale assessments of water quality have focused on salinization and selenium. The authors conducted a comprehensive survey of inorganic contaminants found in 170 stream segments distributed across a spectrum of historic and contemporary human land use. Principal component analysis identified 3 important dimensions of variation in water chemistry that were significantly correlated with contemporary surface mining (principal component 1: elevated dominant ions, sulfate, alkalinity, and selenium), coal geology and legacy mines (principal component 2: elevated trace metals), and residential development (principal component 3: elevated sodium and chloride).

View Article and Find Full Text PDF

Continued improvements in spatial datasets and hydrological modeling algorithms within Geographic Information Systems (GISs) have enhanced opportunities for watershed analysis. With more detailed hydrology layers and watershed delineation techniques, we can now better represent and model landscape to water quality relationships. Two challenges in modeling these relationships are selecting the appropriate spatial scale of watersheds for the receiving stream segment, and handling the network or pass-through issues of connected watersheds.

View Article and Find Full Text PDF

Landscape characteristics and parcel ownership information are often collected on different spatial scales leading to difficulties in implementing land use plans at the parcel level. This study provides a method for aggregating highly resolute landscape planning information to the parcel level. Our parcel prioritization model directly incorporates a Land Trust's conservation goals in the form of a compromise programming model.

View Article and Find Full Text PDF